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Transformers Are Big Bulldozers

Very powerful, but a brute force solution.

Can’t be used for gardening: don’t distinguish brambles from a rare flower.
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NLP Today: Muppets Driving Bulldozers

Great for leaderboards! But not much insight about how machines can
understand language.
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This Talk: Sparse Bulldozers

What’s inside a bulldozer? Can we redesign its components?

I’ll argue that sparse modeling is a great tool for discovering linguistic
structure, and can be an integrated component of complex systems.
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This talk is about...

z p

Transformations from the Euclidean space RK to the simplex.

Joint work with Ben Peters, Gonçalo Correia, Vlad Niculae, Chaitanya
Malaviya, Pedro Ferreira, Julia Kreutzer, Mathieu Blondel, Claire Cardie,
Ramon Astudillo.
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What Does This Have To Do With NLP?

The softmax transfomation is prevalent in language generation:

1 Softmax over the vocabulary to obtain a distribution over words

2 Attention mechanisms to condition of some property of the input
(Bahdanau et al., 2015; Sukhbaatar et al., 2015)

This talk: new transformations that capture sparsity, constraints, and
structure

Sparsemax, Constrained Softmax/Sparsemax, SparseMAP

All differentiable (efficient forward and backward propagation)

Adaptively sparse

Can be used at hidden or output layers.

André Martins (Unbabel/IT) Beyond Softmax Athens, 24/9/19 6 / 67



Outline

1 Sparsity: sparsemax and entmax

2 Constraints and Structure

3 Sparse Seq2Seq

4 Adaptively Sparse Transformers

5 Conclusions
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Sparse Attention with Sparsemax

André F. T. Martins and Ramon Astudillo.

“From Softmax to Sparsemax: A Sparse Model of Attention and
Multi-Label Classification.”

ICML 2016.

André Martins (Unbabel/IT) Beyond Softmax Athens, 24/9/19 8 / 67



Recap: Softmax and Argmax

The transformation softmax : RK → ∆K−1 is defined as:

softmax(z) =
exp(z)∑K

k=1 exp(zk)

Fully dense: softmax(z) > 0, ∀z
Used both as a loss function (cross-entropy) and for attention

Argmax can be written as:

argmax(z) := argmax
p∈∆K−1

z>p.

Retrieves a one-hot vector for the highest scored index.

Sometimes used as hard attention, but not differentiable!
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Sparsemax (Martins and Astudillo, 2016)

We propose as an alternative:

sparsemax(z) := argmin
p∈∆K−1

‖p − z‖2

= argmax
p∈∆K−1

z>p − 1

2
‖p‖2.

In words: Euclidean projection of z onto the probability simplex

Likely to hit the boundary of the simplex, in which case sparsemax(z)
becomes sparse (hence the name)

We’ll see that sparsemax retains many of the properties of softmax,
having in addition the ability of producing sparse distributions!
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Sparsemax in Closed Form

Projecting onto the simplex amounts to a soft-thresholding operation:

sparsemaxi (z) = max{0, zi − τ}

where τ is a normalizing constant such that
∑

j max{0, zj − τ} = 1

To evaluate the sparsemax, all we need is to compute τ

Forward pass: O(K ) (Pardalos and Kovoor, 1990), same as softmax

Backprop: sublinear, better than softmax!
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Two Dimensions

Parametrize z = (t, 0)

The 2D softmax is the logistic (sigmoid) function:

softmax1(z) = (1 + exp(−t))−1

The 2D sparsemax is the “hard” version of the sigmoid:
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sparsemax1([t,0])
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Three Dimensions

Parameterize z = (t1, t2, 0) and plot softmax1(z) and sparsemax1(z)
as a function of t1 and t2

sparsemax is piecewise linear, but asymptotically similar to softmax
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Properties of Softmax/Sparsemax

ρ ∈ {softmax, sparsemax} have similar behaviour and invariances:

1 ρ(0) is the uniform distribution

2 limt→+∞ ρ(tz) is a delta distribution (for sparsemax, t is finite!)

3 Invariance to adding constants:

ρ(z) = ρ(z + c1), for any c ∈ R.
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Example: Sparse Word Selection In SNLI

In blue, the premise words selected by SparseAttention

In red, the hypothesis

Only a few words are selected, which are key for the system’s decision

The sparsemax activation yields a compact and more interpretable
selection, which can be particularly useful in long sentences

A boy rides on a camel in a crowded area while talking on his cellphone.
—— A boy is riding an animal. [entailment]
A young girl wearing a pink coat plays with a yellow toy golf club.
—— A girl is wearing a blue jacket. [contradiction]
Two black dogs are frolicking around the grass together.
—— Two dogs swim in the lake. [contradiction]
A man wearing a yellow striped shirt laughs while seated next to another man who
is wearing a light blue shirt and clasping his hands together.
—— Two mimes sit in complete silence. [contradiction]
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Sparsemax Loss

Sparsemax can also be used as a loss in the output layer (to replace
logistic/cross-entropy loss)

However, not expressed as a log-likelihood (which could lead to log(0)
problems due to sparsity)

Instead, we build a sparsemax loss inspired by Fenchel-Young losses.
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Fenchel-Young Losses

Mathieu Blondel, André F. T. Martins, and Vlad Niculae.

“Learning Classifiers with Fenchel-Young Losses: Generalized Entropies,
Margins, and Algorithms.”

AISTATS 2019.
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Ω-Regularized Argmax

For convex Ω, define the Ω-regularized argmax prediction:

argmax Ω(z) := argmax
p∈∆K−1

z>p − Ω(p).

Argmax corresponds to no regularization, Ω ≡ 0

Softmax amounts to entropic regularization, Ω(p) =
∑K

i=1 pi logpi

Sparsemax amounts to `2-regularization, Ω(p) = 1
2‖p‖

2

Is there something in-between?
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Tsallis Entropies (Tsallis, 1988)

A family of entropies parametrized by α ≥ 0:

Hα(p) :=
1

1− α

(
1−

K∑
i=1

pαi

)

Includes Shannon entropy (limit case when α→ 1)

Setting Ω = −Hα/α:

Argmax corresponds to α→∞
Softmax amounts to α→ 1

Sparsemax amounts to α = 2

We call this transformation α-entmax (Peters et al., 2019).
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α-Entmax: Summary

Includes argmax, softmax, sparsemax as particular cases

Forward pass for general α can be done with a bissection algorithm
(Blondel et al., 2018)

Backward pass runs in sublinear time

Always sparse for α > 1, sparsity increases with α

Special case: 1.5-entmax (specialized forward pass algo)
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Fenchel-Young Losses

Groundtruth q ∈ ∆K−1, scores z ∈ RK , Ω∗(z) := max
p∈∆K−1

z>p − Ω(p)

LΩ(z ,q) := Ω∗(z) + Ω(q)− z>q

For any strictly convex Ω:

LΩ(z ,q) ≥ 0 (automatic from Fenchel-Young inequality)

LΩ(z ,q) = 0 iff q = argmax Ω(z)

LΩ is convex and differentiable with ∇LΩ(z ,q) = argmax Ω(z)− q

Recovers cross-entropy loss, sparsemax loss, and many other known
losses
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Tsallis Entropies and their Losses

Key result: for all α > 1, all transformations are sparse and lead to
losses with margins!

The margin size is related to the slope of the entropy in the simplex
corners!

See paper for details!
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Outline

1 Sparsity: sparsemax and entmax

2 Constraints and Structure

3 Sparse Seq2Seq

4 Adaptively Sparse Transformers

5 Conclusions
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Sparse and Constrained Attention

André F. T. Martins and Julia Kreutzer.
“Fully Differentiable Neural Easy-First Taggers.”
EMNLP 2017

Chaitanya Malaviya, Pedro Ferreira, and André F. T. Martins.
“Sparse and Constrained Attention for Neural Machine Translation.”
ACL 2018.
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Constrained Softmax (Martins and Kreutzer, 2017)

Constrained softmax resembles softmax, but it allows imposing hard
constraints on the maximal probability assigned to each word

Given scores z ∈ RK and upper bounds u ∈ RK :

csoftmax(z ; u) = argmin
p∈∆K−1

KL(p ‖ softmax(z))

s.t. p ≤ u

Particular cases:

If u ≥ 1, all constraints are loose and this reduces to softmax

If u ∈ ∆K−1, they are tight and we must have p = u
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Constrained Sparsemax (Malaviya et al., 2018)

Similar idea, but replacing softmax by sparsemax:

csparsemax(z ; u) = argmin
p∈∆K−1

‖p − z‖2

s.t. p ≤ u

Both sparse and upper bounded

u ≥ 1 =⇒ becomes sparsemax

Forward pass can be done in O(K ) (Pardalos and Kovoor, 1990)

Backprop can be done in sublinear time

Malaviya et al. (2018) used this to model fertility in NMT (a la IBM
Model 2).
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Attention Maps

Each source word has a budget of how much attention it can receive,
which prevents repetitions.

Softmax (left) vs Constrained Sparsemax (right) for De-En:
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Sentence Examples

input so ungefähr , sie wissen schon .
reference like that , you know .
softmax so , you know , you know .
sparsemax so , you know , you know .
csoftmax so , you know , you know .
csparsemax like that , you know .

input und wir benutzen dieses wort mit solcher verachtung .
reference and we say that word with such contempt .
softmax and we use this word with such contempt contempt .
sparsemax and we use this word with such contempt .
csoftmax and we use this word with like this .
csparsemax and we use this word with such contempt .
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SparseMAP

Vlad Niculae, André F. T. Martins, Mathieu Blondel, and Claire Cardie.

“SparseMAP: Differentiable Sparse Structured Inference.”

ICML 2018.
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SparseMAP (Niculae et al., 2018)

Generalizes sparsemax to sparse structured prediction

Works both as output layer and hidden layer

With latent models, similar to structured attention networks (Kim
et al., 2017), but sparse

Efficient forward/backprop requiring only an argmax (MAP) oracle!
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Structured Inference

Unstructured Structured

argmax MAP inference
softmax Marginal inference

sparsemax ?
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Structured Inference

Unstructured Structured

argmax MAP inference
softmax Marginal inference

sparsemax SparseMAP
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Example: Latent Structured Alignments in SNLI
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Example: Dependency Parsing

Suitable for capturing ambiguity in natural language!
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Related Work

Structured attention networks (Kim et al., 2017): not sparse

SPIGOT (Peng et al., 2018): different framework, same building
blocks (our active set algo for polytope projection applies there too)

... but SPIGOT gradients are inexact while ours are exact

Fusedmax (and other structured sparse) attention (Niculae and
Blondel, 2017):
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Outline

1 Sparsity: sparsemax and entmax

2 Constraints and Structure

3 Sparse Seq2Seq

4 Adaptively Sparse Transformers

5 Conclusions
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Sparse Sequence to Sequence

Ben Peters, Vlad Niculae, and André F. T. Martins.

“Sparse Sequence-to-Sequence Models.”

ACL 2019.
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Sparse Sequence-to-Sequence (Peters et al., 2019)

Backbone: an RNN-based model with attention.

Key idea:

Replace all instances of softmax by sparsemax or α-entmax.

We consider both sparsity in the attention mechanism and sparsity
in the output layer

Two tasks:

Machine translation (word-based)

Morphological inflection (character-based).
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Sparsity in Forced Decoding (Peters et al., 2019)

Only a few words get non-zero probability at each time step

Auto-completion when several words in a row have probability 1

Useful for predictive translation when interacting with a user

André Martins (Unbabel/IT) Beyond Softmax Athens, 24/9/19 38 / 67



Sparsity in Attention and in Output Later

The impact on accuracy is bigger when sparsity is used in the output layer

Sparsity in attention doesn’t impact accuracy, but leads to interpretable
alignments.
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Training Time vs Accuracy

1.5-entmax attains better performance faster.
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Example: Morphological Inflection

Only a few inflected words get nonzero probability.
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Example: Morphological Inflection

We developed variants of these models for a SIGMORPHON submission

A double attention model and a gated attention model, where the gates
decides whether to read information from the lemma or the inflectional
tags.
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Adaptively Sparse Transformers

Gonçalo Correia, Vlad Niculae, and André F. T. Martins.

“Adaptively Sparse Transformers.”

EMNLP 2019 (to appear).
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Transformer (Vaswani et al., 2017)

Key idea: instead of RNN/CNNs,
use self-attention in the encoder

Each word state attends to all the
other words

Each self-attention is followed by a
feed-forward transformation

Do several layers of this

Do the same for the decoder,
attending only to already generated
words.
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Transformer Basics

Let’s define the basic building blocks of transformer networks first: new
attention layers!

Two innovations:

scaled dot-product attention

multi-head attention
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Scaled Dot-Product and Multi-Head Attention

(Vaswani et al., 2017)
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Scaled Dot-Product Attention

Inputs:

A query vector q (e.g. the decoder state)

A matrix K whose columns are key vectors (e.g. the encoder states)

A matrix V whose columns are value vectors (e.g. the encoder states)

When discussing attention with RNNs, we assume the key and value
vectors were the same, but they don’t need to!

Output: the weighted sum of values, where each weight is computed by a
dot product between the query and the corresponding key:

a = softmax(Kq), v̄ = Va.

With multiple queries,

V̄ = softmax(QK>)V, Q ∈ R|Q|×dk ,K ∈ R|K |×dk ,V ∈ R|K |×dv .
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Scaled Dot-Product Attention

Problem: As dk gets large, the variance of q>k increases, the softmax
gets very peaked, hence its gradient gets smaller.

Solution: scale by length of query/key vectors:

V̄ = softmax

(
QK>√

dk

)
V.
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Scaled Dot-Product and Multi-Head Attention

(Vaswani et al., 2017)
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Multi-Head Attention

Self-attention lets each word state form a query vector and attend to the
other words’ key vectors

This is vaguely similar to a 1D convolution, but where the filter weights
are “dynamic” is the window size spans the entire sentence!

Problem: only one channel for words to interact with one-another

Solution: multi-head attention!

first project Q, K, and V into lower dimensional spaces

then apply attention in multiple channels, concatenate the outputs
and pipe through linear layer:

MultiHead(Q,K,V) = Concat(head1, . . . ,headh)WO ,

where headi = Attention(QWQ
i ,KWK

i ,VWV
i ).
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Other Tricks

Self-attention blocks are repeated 6
times

Residual connections on each
attention block

Positional encodings (to distinguish
word positions)

Layer normalization
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Adaptively Sparse Transformers
(Correia et al., 2019)

Key idea: replace softmax in attention heads by α-entmax!

We saw that a scalar parameter (α) influences how sparse the
distribution will be

Similar to a temperature parameter, but more stable

Can we learn α?

Idea: learn adaptively how sparse transformer attentions should be

One α for each attention head and each layer
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Related Work: Other Sparse Transformers

Sparse Transformer (Child et al., 2019) and the adaptive span Transformer
(Sukhbaatar et al., 2019) only attend to words within a contiguous span

Our model: different and not necessarily contiguous sparsity patterns for
each attention head; learn it adaptively
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Trajectories of α During Training

Most heads become denser in the beginning, before converging.

This suggests that dense attention may be more beneficial while the
network is still uncertain, being replaced by sparse attention afterwards.
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Learned α

Bimodal for the encoder, mostly unimodal for the decoder.
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Head Density Per Layer

Lower values mean that that attention head is sparser.André Martins (Unbabel/IT) Beyond Softmax Athens, 24/9/19 57 / 67



Jensen-Shannon Divergence Between Heads

Models using sparse entmax have more diverse attention.André Martins (Unbabel/IT) Beyond Softmax Athens, 24/9/19 58 / 67



Previous Position Head
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Interrogation-Detecting Head
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Subword-Merging Head
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Conclusions

Transformations from real numbers to distributions are ubiquitous

We introduced new transformations that handle sparsity,
constraints, and structure

All are differentiable and their gradients are efficient to compute

Can be used as hidden layers or as output layers

The sparsity can be adaptive

Various experiments in NMT (RNN and Transformers) with improved
interpretability
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We’re Hiring!

Excited about MT, crowdsourcing and Lisbon? ⇒ jobs@unbabel.com.
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DeepSPIN

ERC project DeepSPIN (Deep Structured Prediction in NLP)

ERC starting grant, started in 2018

Topics: deep learning, structured prediction, NLP, machine translation

Involving Unbabel and the University of Lisbon

More details: https://deep-spin.github.io
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