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Really?	
Wow! !



Introduction

• 2019:	Machine	translation	is	a	pervasive	and	reliable*	technology	

- free	high-quality	online	systems	

- important	part	of	professional	translation	workflow
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• Core	problem	of	NLP,	long	history	and	variety	of	approaches:	
- rule-based	MT:	manually	created	lexicons,	parsing	and	translation	rules	

- statistical	MT	(SMT):	based	on	information	theory		

- neural	MT:	a	conditional	language	model	based	on	deep	neural	networks

*well,	mostly	reliable



A	brief	history
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2015-16:	NMT	beats	phrase-based	SMT,	adopted	by	large	online	MT	providers

2017:	Transformer	(fully	attention	based	network)	quickly	becomes	state-of-the-art	

2014-15:	seq2seq	NMT	(RNN-based	+	attention)	

2000’s:	multiple	advances	in	SMT	

-	phrase-based	SMT	(open-source	platform	Moses	since	2006)	
-	syntax-based	SMT:	exploits	parsers	to	bridge	across	languages	
-	tree-based	SMT:	synchronous	grammars	learnt	from	parallel	data

1990’s:	first	SMT	systems	(IBM	models)	

-	noisy-channel	formulation	
-	tightly	connected	to	advances	in	speech	recognition

1947:	Weaver’s	memorandum
-	frames	MT	as	code	deciphering	problem	(link	to	advances	in	cryptography)		
-	highlights	limitations	of	early	word-by-word	translation	approaches

1997:	early	NMT	approaches	proposed	by	two	Spanish	groups	(“connectionist	MT”)
-	cannot	scale	=>	abandoned



Today’s	Lecture

• Before	NMT:	Phrase-based	SMT		

• NMT	architectures	

- RNN-based	seq2seq	
- RNN-based	seq2seq	+	Attention	
- Transformer	

• NMT	decoding	&	Word	segmentation	

• Evaluation	

• Human	parity?	and	open	issues	

• Useful	links
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PHRASE-BASED	SMT
Before	NMT:
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Why	Phrase-Based	SMT??	

- history	is	fun	

- Greek	like	history	

- it	wasn’t	so	long	ago	after	all!	

- MT	history	can	give	us	a	good	grasp	of	
how	the	NLP	field,	in	general,	evolved



Fundamentals	of	Statistical	MT

• Early	SMT	approaches	adopted	the	noisy	channel	model:
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e * = arg max
e

p(e | f )

e * = arg max
e

p( f |e) p(e)
p( f )

e * = arg max
e

p( f |e) p(e)

translation	
model

target	language		
model

e f
:	English	(the	original	message)	
:	foreign	(the	distorted	message)	
:	translation	(the	recovered	message)

e
f
e*



Fundamentals	of	Statistical	MT	(II)
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• Phrase-based	SMT	(discriminative	approach):	
- linear	combination	of	feature	functions	
- introduce	hidden	variable	a:	phrase	alignment

e * = arg max
e

max
a

exp [
I

∑
i= 1

λi h i ( f, e, a)]
- permits	to	add	any	kind	of	translation	feature	(“submodels”)	like:	

- phrase	translation	probabilities		
- reordering	probabilities	
- word	translation	probabilities,	length	penalties,	…	

- feature	weights	can	be	uniform	or	tuned	to	maximize	some	measure	of	
accuracy	on	devset

p( f |e)	and	p(e | f )
p(σ(a))



SMT	framework	overview
Human-translated	data Raw	text	data

Language	
model

Source	(f) Target	(e) Target	(e)
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……

Phrase	
translation	
model

Reordering	
model

pTM(f|e)

pRM(a|e)

pLM(e)



SMT	framework	overview
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freedom

			liberta' 0.31

			la	liberta'	di 0.22

			mobilita' 0.08

			… …

must

			devono 0.50

			deve 0.18

			avrebbe	dovuto 0.05

			… …

pTM(f|e) pLM(e)pRM(a|e)

Translate	phrase	after	
the	???	source	phrase

previous: following: other:

free 0.55 0.05 0.40

freedom 0.30 0.65 0.05

...

must 0.90 0.02 0.08

must	be 0.95 0.02 0.03

			… …

P(wi|wi-2	wi-1)

liberta'	di	...

			movimento 0.16

			parola 0.09

			fare 0.05

			… …

dev'	essere	...

			il 0.22

			la 0.18

			dato 0.02

			… …Source	language	(f):	English	
Target	language	(e):	Italian



SMT	framework	overview
Human-translated	data Raw	text	data

pTM(f|e)

pRM(a|e)
Reordering	
model

pLM(e)
Language	
model

Source	
sentence

f Target	
translatione*

pTM pRM pLM.	.	.

Decoder:	
argmaxe	p(e|f)
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Source	(f) Target	(e) Target	(e)

Phrase	
translation	
model

……

TR
AIN

	

TE
ST

Log-linear	combination:

e * = arg max
e

max
a

exp [
I

∑
i= 1

λi h i ( f, e, a)]
h 1 = log PLM(e)
h 2 = log PRM(a |e)
h 3 = log PRM( f |a, e)



PHRASE-BASED	SMT	DECODING
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while		ensuring	thatFreedom		of	movement must		be	encouraged …

Phrase-based	SMT	Decoding
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At	translation	time,	search	for	the	most	probable	
translation	according	to	the	learned	models

pTM(f|e) pRM(a|e) pLM(e)



while		ensuring	that

LM	scores

ReoM	scores

Freedom		of	movement must		be	encouraged

E'	necessario	incoraggiare

…

Phrase-based	SMT	Decoding
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At	translation	time,	search	for	the	most	probable	
translation	according	to	the	learned	models

pTM(f|e) pRM(a|e) pLM(e)

TM
	sco

res



LM	scores

while		ensuring	that

LM	scores

ReoM	scores

Freedom		of	movement must		be	encouraged

E'	necessario	incoraggiare 	tale	mobilità	

…

Phrase-based	SMT	Decoding
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ReoM	scores

At	translation	time,	search	for	the	most	probable	
translation	according	to	the	learned	models

pTM(f|e) pRM(a|e) pLM(e)

TM
	sco

res TM	scores



LM	scoresLM	scores

while		ensuring	that

garantendo	

LM	scores

TM
	sco

res

TM
	sc
or
es

TM	scores

ReoM	scores ReoM	scores

…

Freedom		of	movement must		be	encouraged

E'	necessario	incoraggiare 	tale	mobilità	

…

Phrase-based	SMT	Decoding
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ReoM	scores

At	translation	time,	search	for	the	most	probable	
translation	according	to	the	learned	models

pTM(f|e) pRM(a|e) pLM(e)



SMT:	BEYOND	PHRASE-BASED
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The	Vauquois	Triangle
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Bernard	Vauquois	
1929-1985



Phrase-based	VS	Tree-based	SMT

Phrase-based:

Hierarchical	phrase-based:	

Syntax-based	
(tree-to-string):
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NEURAL	MACHINE	TRANSLATION
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…

NMT	framework	overview
Human-translated	data Raw	text	data

pTM(f|e)

pRM(a|e)
Reordering	
model

pLM(e)
Language	
model
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Source	(f) Target	(e) Target	(e)

pNMT(e|f)

End-to-end	
neural	

translation	
model

Phrase	
translation	
model



e * = arg max
e

max
a

exp [
I

∑
i= 1

λi h i ( f, e, a)]

…

pRM(a|e)

NMT	framework	overview

Source	
sentence

Human-translated	data Raw	text	data

pTM(f|e)

Reordering	
model

pLM(e)
Language	
model

f Target	
translatione*
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Source	(f) Target	(e) Target	(e)

Phrase	
translation	
model

pNMT(e|f)

pNMT(e|f)

End-to-end	
neural	

translation	
model

TR
AIN

	

TE
ST

No	combination	of	features	(submodels)	
No	feature	engineering

Decoder:	
argmaxe	p(e|f)

e * = arg max
e

pNMT(e | f )



But	what's	that??		

-	My	mum:	“Some	kind	of	
traffic	light..?”	

-	A	vector	of	real	numbers	
with	obscure	meaning…	

Let's	take	a	step	back!

• ENCODE:	Project	input	sentence	into	a	
continuous-space	representation	

• DECODE:	Generate	the	target	sentence	
word-by-word	from	the	continuous	
representation

Sequence-to-sequence	NMT
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Freedom of 	must be encouragedmovement

E' necessario incoraggiare

ENCODER

Continuous-space 
sentence representation

DECODER

.	.	.



Continuous-space	representations
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Get	the	intuition	from	word	representations	(a.k.a	word	embeddings):	

-	each	word	in	a	vocabulary	is	a	vector,	or	a	point	in	a	n-dimensional	space	

-	dimensions	have	no	pre-defined	meaning	

-	dimensions	capture	features	of	the	input	that	are	useful	for	the	modeled	task

https://www.tensorflow.org/tutorials/word2vec

abacus 0.01 -0.23 0.17 … 0.12

…

man 0.21 -0.54 0.02 … -0.21

…

queen 0.22 0.65 0.02 … -0.01

…

walked 0.43 0.01 0.87 … 0.01

walking 0.39 0.01 -0.32 … 0.03

woman 0.38 0.81 0.02 … -0.01



RNN-based	Seq2seq	NMT
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Freedom of 	must be encouragedmovement

ENCODER

Continuous-space 
sentence representation

DECODER

E' necessario incoraggiare .	.	.

-0.07 0.01 -0.23 0.17 … 0.12

[Sutskever	et	al.	2014;	Cho	&	al.	2014]	



RNN-based	Seq2seq	NMT
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Freedom of 	must be encouragedmovement

ENCODER

 Continuous word 
representation

Recurrent 
hidden state

Continuous-space 
sentence representation

DECODER

E' necessario incoraggiare .	.	.

One-hot vector
Input word



RNN-based	Seq2seq	NMT
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Freedom of 	must be encouragedmovement

	COPY

E' necessario incoraggiare

ENCODER

DECODER

 Continuous word 
representation

One-hot vector

Recurrent 
hidden state

Output word 
probability

Recurrent 
hidden state

Target word (train time) or 
Sampled word (test time)

Continuous-space 
sentence representation

.	.	.

Input word

One-hot vector

NEURAL MACHINE TRANSLATION
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Topics: Sequence-to-Sequence Learning — Decoder
•  Decoder

(1)Recursively update the memory

(2)Compute the next word prob.

(3)Sample a next word
•Beam search is a good idea

X
X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

L2m`�H J�+?BM2 h`�MbH�iBQM Ĝ .2+Q/2`

e = (Economic, growth, has, slowed, down, in, recent, years, .)

W
or

d 
Ss

am
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R
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re

nt
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at
e z i

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

ip
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or

d 
Pr
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ty

(1)

(2)

(3)

RX _2+m`bBp2Hv mT/�i2 i?2 `2+m``2Mi ?B//2M bi�i2, xB = 7(xB−1,mB−1, +)
kX L2ti rQ`/ T`Q#�#BHBiv, T(mB = F | m1, . . .mB−1) ∝ 2tT

(
T⊤

F xB
)

jX a�KTH2 i?2 M2ti rQ`/ mB

U*?Q 2i �HX- kyR9c amibF2p2` 2i �HX- kyR9V

zt0 = f(zt0�1, ut0�1, hT )

p(ut0 |u<t0) / exp(R>
ut0

zt0 + but0 )
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Topics: Sequence-to-Sequence Learning — Decoder
•  Decoder

(1)Recursively update the memory

(2)Compute the next word prob.

(3)Sample a next word
•Beam search is a good idea
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Topics: Sequence-to-Sequence Learning — Encoder
•  Encoder

(1)1-of-K coding of source words
(2)Continuous-space representation

(3)Recursively read words
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RX 1M+Q/2 2�+? rQ`/ �b � 1@Q7@E +Q/2/ p2+iQ` rB
kX S`QD2+i rB BMiQ � +QMiBMmQmb bT�+2, bB ∈ R/

jX _2+m`bBp2Hv mT/�i2 i?2 `2+m``2Mi ?B//2M bi�i2,
9X + = ?h, � }t2/@bBx2 `2T`2b2Mi�iBQM Q7 � p�`B�#H2@H2M;i? b2Mi2M+2

U*?Q 2i �HX- kyR9c amibF2p2` 2i �HX- kyR9V

st0 = W>xt0 , where W 2 R|V |⇥d

ht = f(ht�1, st), for t = 1, . . . , T

NEURAL MACHINE TRANSLATION
17

Topics: Sequence-to-Sequence Learning — Encoder
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(1)1-of-K coding of source words
(2)Continuous-space representation
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X
X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

L2m`�H J�+?BM2 h`�MbH�iBQM Ĝ 1M+Q/2`

e = (Economic, growth, has, slowed, down, in, recent, years, .)

1-
of

-K
 c

od
in

g
C

on
tin

uo
us

-s
pa

ce
W

or
d 

R
ep

re
se

nt
at

io
n

si

wi

R
ec

ur
re

nt
St

at
e hi

(1)

(2)

(3) (4)

RX 1M+Q/2 2�+? rQ`/ �b � 1@Q7@E +Q/2/ p2+iQ` rB
kX S`QD2+i rB BMiQ � +QMiBMmQmb bT�+2, bB ∈ R/

jX _2+m`bBp2Hv mT/�i2 i?2 `2+m``2Mi ?B//2M bi�i2,
9X + = ?h, � }t2/@bBx2 `2T`2b2Mi�iBQM Q7 � p�`B�#H2@H2M;i? b2Mi2M+2

U*?Q 2i �HX- kyR9c amibF2p2` 2i �HX- kyR9V

st0 = W>xt0 , where W 2 R|V |⇥d

ht = f(ht�1, st), for t = 1, . . . , T

NEURAL MACHINE TRANSLATION
17

Topics: Sequence-to-Sequence Learning — Encoder
•  Encoder

(1)1-of-K coding of source words
(2)Continuous-space representation
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RNN-based	Seq2seq	NMT	+	Bidirectional	Encoder
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Freedom of 	must be encouragedmovement

	CONCAT & COPY

E' necessario incoraggiare

ENCODER

DECODER

 Continuous word 
representation

One-hot vector

Recurrent 
hidden state

Output word 
probability

Recurrent 
hidden state

Target word (train time) or 
Sampled word (test time)

Continuous-space 
sentence representation

.	.	.

Input word

One-hot vector
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Topics: Sequence-to-Sequence Learning — Decoder
•  Decoder

(1)Recursively update the memory

(2)Compute the next word prob.

(3)Sample a next word
•Beam search is a good idea
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p(ut0 |u<t0) / exp(R>
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Topics: Sequence-to-Sequence Learning — Decoder
•  Decoder

(1)Recursively update the memory

(2)Compute the next word prob.

(3)Sample a next word
•Beam search is a good idea

X
X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

L2m`�H J�+?BM2 h`�MbH�iBQM Ĝ .2+Q/2`

e = (Economic, growth, has, slowed, down, in, recent, years, .)
W

or
d 

Ss
am

pl
e

ui

R
ec

ur
re

nt
St

at
e z i

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

ip

W
or

d 
Pr

ob
ab

ili
ty

(1)

(2)

(3)

RX _2+m`bBp2Hv mT/�i2 i?2 `2+m``2Mi ?B//2M bi�i2, xB = 7(xB−1,mB−1, +)
kX L2ti rQ`/ T`Q#�#BHBiv, T(mB = F | m1, . . .mB−1) ∝ 2tT

(
T⊤

F xB
)

jX a�KTH2 i?2 M2ti rQ`/ mB

U*?Q 2i �HX- kyR9c amibF2p2` 2i �HX- kyR9V

zt0 = f(zt0�1, ut0�1, hT )

p(ut0 |u<t0) / exp(R>
ut0

zt0 + but0 )



RNN-based	Seq2seq	NMT	+	Attention

�30

Freedom of 	must be encouragedmovement

ENCODER

 Continuous word 
representation

One-hot vector

Recurrent 
hidden state

Input word

E' necessario

DECODER

Output word 
probability

Recurrent 
hidden state

Target word (train time) or 
Sampled word (test time)

One-hot vector

incoraggiare .	.	.



‣ When decoding, perform a linear combination of the 
encoded input vectors, weighted by “attention weights”
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<latexit sha1_base64="hFxO5UtyO5a/QEoP47g0JAPJpqM=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+4B2KJn0ThuayYxJplCGfocbF4q49WPc+Tdm2i609UDgcM693JMTJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0l/utMSrNY/loJgn6ER1IHnJGjZX8bkTNMAizYc+bkl6p7FbcGcgq8RakDAvUe6Wvbj9maYTSMEG17nhuYvyMKsOZwGmxm2pMKBvRAXYslTRC7Wez0FNybpU+CWNlnzRkpv7eyGik9SQK7GQeUi97ufif10lNeONnXCapQcnmh8JUEBOTvAHS5wqZERNLKFPcZiVsSBVlxvZUtCV4y19eJc1qxbusVB+uyrXbRR0FOIUzuAAPrqEG91CHBjB4gmd4hTdn7Lw4787HfHTNWeycwB84nz9tDJHe</latexit>
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<latexit sha1_base64="/BvkXpFuk0AFjRAcO9/abxcFgR0=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+4B2KJk004ZmMmNyp1CGfocbF4q49WPc+Tdm2i609UDgcM693JMTJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju9xvjbk2IlaPOEm4H9GBEqFgFK3kdyOKwyDMhr3qlPRKZbfizkBWibcgZVig3it9dfsxSyOukElqTMdzE/QzqlEwyafFbmp4QtmIDnjHUkUjbvxsFnpKzq3SJ2Gs7VNIZurvjYxGxkyiwE7mIc2yl4v/eZ0Uwxs/EypJkSs2PxSmkmBM8gZIX2jOUE4soUwLm5WwIdWUoe2paEvwlr+8SprVindZqT5clWu3izoKcApncAEeXEMN7qEODWDwBM/wCm/O2Hlx3p2P+eias9g5gT9wPn8AbpKR3w==</latexit>
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<latexit sha1_base64="jv9F9hQc7z2SNPpV1QfhwkTepGg=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsy0gi6LblxWsA9oh5JJM21okhmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS1lGiCG2RiEeqG2BNOZO0ZZjhtBsrikXAaSeY3GV+Z0qVZpF8NLOY+gKPJAsZwcZKfl9gMw7CdDyoz9GgXHGr7gJonXg5qUCO5qD81R9GJBFUGsKx1j3PjY2fYmUY4XRe6ieaxphM8Ij2LJVYUO2ni9BzdGGVIQojZZ80aKH+3kix0HomAjuZhdSrXib+5/USE974KZNxYqgky0NhwpGJUNYAGjJFieEzSzBRzGZFZIwVJsb2VLIleKtfXiftWtWrV2sPV5XGbV5HEc7gHC7Bg2towD00oQUEnuAZXuHNmTovzrvzsRwtOPnOKfyB8/kDcBiR4A==</latexit>

h4
<latexit sha1_base64="+YLzsEr/4HtFuWfk3EuOEKujH9g=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWZqQZdFNy4r2Ae0Q8mkmTY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck+OHwuujeN8o8LG5tb2TnG3tLd/cHhUPj5p6yhRlLVoJCLV9YlmgkvWMtwI1o0VI6EvWMef3GV+Z8qU5pF8NLOYeSEZSR5wSoyVvH5IzNgP0vGgPseDcsWpOgvgdeLmpAI5moPyV38Y0SRk0lBBtO65Tmy8lCjDqWDzUj/RLCZ0QkasZ6kkIdNeugg9xxdWGeIgUvZJgxfq742UhFrPQt9OZiH1qpeJ/3m9xAQ3XsplnBgm6fJQkAhsIpw1gIdcMWrEzBJCFbdZMR0TRaixPZVsCe7ql9dJu1Z1r6q1h3qlcZvXUYQzOIdLcOEaGnAPTWgBhSd4hld4Q1P0gt7Rx3K0gPKdU/gD9PkDcZ6R4Q==</latexit>

query vector

key vectors

Attention: Core Idea

(Bahdanau et al., 2015)

ct
context vector

Slide	by	Barbara	Plank



1. For each query-key pair, calculate an attention score (ai) 

2. Get an attention distribution  
via softmax normalization (!i)
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<latexit sha1_base64="/BvkXpFuk0AFjRAcO9/abxcFgR0=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+4B2KJk004ZmMmNyp1CGfocbF4q49WPc+Tdm2i609UDgcM693JMTJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju9xvjbk2IlaPOEm4H9GBEqFgFK3kdyOKwyDMhr3qlPRKZbfizkBWibcgZVig3it9dfsxSyOukElqTMdzE/QzqlEwyafFbmp4QtmIDnjHUkUjbvxsFnpKzq3SJ2Gs7VNIZurvjYxGxkyiwE7mIc2yl4v/eZ0Uwxs/EypJkSs2PxSmkmBM8gZIX2jOUE4soUwLm5WwIdWUoe2paEvwlr+8SprVindZqT5clWu3izoKcApncAEeXEMN7qEODWDwBM/wCm/O2Hlx3p2P+eias9g5gT9wPn8AbpKR3w==</latexit>
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<latexit sha1_base64="jv9F9hQc7z2SNPpV1QfhwkTepGg=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsy0gi6LblxWsA9oh5JJM21okhmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS1lGiCG2RiEeqG2BNOZO0ZZjhtBsrikXAaSeY3GV+Z0qVZpF8NLOY+gKPJAsZwcZKfl9gMw7CdDyoz9GgXHGr7gJonXg5qUCO5qD81R9GJBFUGsKx1j3PjY2fYmUY4XRe6ieaxphM8Ij2LJVYUO2ni9BzdGGVIQojZZ80aKH+3kix0HomAjuZhdSrXib+5/USE974KZNxYqgky0NhwpGJUNYAGjJFieEzSzBRzGZFZIwVJsb2VLIleKtfXiftWtWrV2sPV5XGbV5HEc7gHC7Bg2towD00oQUEnuAZXuHNmTovzrvzsRwtOPnOKfyB8/kDcBiR4A==</latexit>

h4
<latexit sha1_base64="+YLzsEr/4HtFuWfk3EuOEKujH9g=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWZqQZdFNy4r2Ae0Q8mkmTY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck+OHwuujeN8o8LG5tb2TnG3tLd/cHhUPj5p6yhRlLVoJCLV9YlmgkvWMtwI1o0VI6EvWMef3GV+Z8qU5pF8NLOYeSEZSR5wSoyVvH5IzNgP0vGgPseDcsWpOgvgdeLmpAI5moPyV38Y0SRk0lBBtO65Tmy8lCjDqWDzUj/RLCZ0QkasZ6kkIdNeugg9xxdWGeIgUvZJgxfq742UhFrPQt9OZiH1qpeJ/3m9xAQ3XsplnBgm6fJQkAhsIpw1gIdcMWrEzBJCFbdZMR0TRaixPZVsCe7ql9dJu1Z1r6q1h3qlcZvXUYQzOIdLcOEaGnAPTWgBhSd4hld4Q1P0gt7Rx3K0gPKdU/gD9PkDcZ6R4Q==</latexit>

Calculating attention (1/2):  
Attention weights !

"1=.79 "2=.1 "3=.05 "4=-.03

key vectors

a(q, k)

a1=2.1 a2=0.1 a3=-0.5 a4=-1.0

a(q, k)a(q, k)a(q, k)

softmax

query vector

(Bahdanau et al., 2015)
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3. Combine together value vectors (can be the encoder states, like 
the key vectors) by taking the weighted sum to get c
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Calculating attention (2/2):  
Attention weights !

"1=.79 "2=.1 "3=.05 "4=-.03

Value vectors

weight

+ ct

ct =
nX

i=1

↵t,ihi
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(Bahdanau et al., 2015)
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Freedom of 	must be encouragedmovement

ENCODER

 Continuous word 
representation

One-hot vector

Recurrent 
hidden state

Input word

E' necessario

DECODER

Output word 
probability

Recurrent 
hidden state

Target word (train time) or 
Sampled word (test time)

One-hot vector

incoraggiare .	.	.
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Freedom of 	must be encouragedmovement

ENCODER

 Continuous word 
representation

One-hot vector

Recurrent 
hidden state

Input word

E' necessario incoraggiare

DECODER

Output word 
probability

Recurrent 
hidden state

Target word (train time) or 
Sampled word (test time) .	.	.

One-hot vector

Weighted sum  
of  input 
representations
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Freedom of 	must be encouragedmovement

ENCODER

 Continuous word 
representation

One-hot vector

Recurrent 
hidden state

Input word

E' necessario incoraggiare

DECODER

Output word 
probability

Recurrent 
hidden state

Target word (train time) or 
Sampled word (test time) .	.	.

One-hot vector

Weighted sum  
of  input 
representations

NEURAL MACHINE TRANSLATION
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Topics: Sequence-to-Sequence Learning — Decoder
•  Decoder

(1)Recursively update the memory

(2)Compute the next word prob.

(3)Sample a next word
•Beam search is a good idea
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F xB
)

jX a�KTH2 i?2 M2ti rQ`/ mB

U*?Q 2i �HX- kyR9c amibF2p2` 2i �HX- kyR9V

zt0 = f(zt0�1, ut0�1, hT )

p(ut0 |u<t0) / exp(R>
ut0

zt0 + but0 )
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Topics: Attention-based Model
• Encoder: Bidirectional RNN

• A set of annotation vectors

• Attention-based Decoder
(1)Compute attention weights

(2)Weighted-sum of the annotation vectors

(3)Use      instead of X
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↵t0,t / exp(e(zt0�1, ut0�1, ht))

ct0 =
PT

t=1↵t0,tht

ct0 hT
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Topics: Attention-based Model
• Encoder: Bidirectional RNN

• A set of annotation vectors
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Attention	visualization

�37Taken	from	(Bahdanau	et	al.	2015)



RNN-based	Seq2seq	NMT	+	Attention

�38

Freedom of 	must be encouragedmovement

ENCODER

 Continuous word 
representation

One-hot vector

Recurrent 
hidden state

Input word

E' necessario incoraggiare

DECODER

Output word 
probability

Recurrent 
hidden state

Target word (train time) or 
Sampled word (test time) .	.	.

One-hot vector

Weighted sum  
of  input 
representations

nov’16: Seq2seq rePLACED 

PHRASE-BASED SMT           
          

in google Translate



One	architecture,	many	applications!
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Chinese English

machine translation:

Neural Encoder-
DecoderLarge 

document
Short 

summary

text summarization:

Neural Encoder-
Decoder

Neural Encoder-
DecoderSpeech Transcript

speech recognition:

Neural Encoder-
Decoder SpeechText

speech synthesis:

Neural Encoder-
DecoderVideo Video 

description

video captioning:



NMT	vs	SMT

What	has	been	solved	(or	extremely	improved)	by	NMT*:	

✓models	capture	distributional	semantics	of	words	and	phrases		

✓overall	grammaticality	of	output	sentences	

in	particular:	word	reordering,	long	dependencies

*See	for	instance	(Bentivogli	et	al.	2017)	for	a	detailed	error	analysis	of	NMT	vs	SMT	using	human	post-editing �40



Back in 2014…

Montreal’s first NMT online demo:

 41

EN-DE | EN-FR 

Type text here:

The Budapest Prosecutor’s Office has initiated an investigation on the accident. 

Translation:

Die Budapester Staatsanwaltschaft hat ihre Ermittlungen zum Vorfall eingeleitet. 



Today’s	Lecture

• Before	NMT:	Phrase-based	SMT		

• NMT	architectures	

- RNN-based	seq2seq	
- RNN-based	seq2seq	+	Attention	
- Transformer	

• NMT	decoding	&	Word	segmentation	

• Evaluation	

• Human	parity?	and	open	issues	

• Useful	links

�42



FULLY	ATTENTIONAL	NETWORKS	
(A.K.A.	TRANSFORMER)

�43



Core	idea:	Attention	is	All	You	Need	(Vaswani	et	al.	2017)

• Attention	has	major	impact	on	seq2seq	performance	

• Recurrency	is	an	obstacle	to	parallelization		

=>	Can	we	build	a	fully	attentional	seq2seq	model	without	recurrency?

�44

4732

(a) LSTM (b) FAN

Figure 1: Diagram showing the main difference be-
tween a LSTM and a FAN. Purple boxes indicate
the summarized vector at current time step t which
is used to make prediction. Orange arrows indicate
the information flow from a previous input to that
vector.

learn hierarchical structure with a set of controlled
experiments.

3 Tasks

We choose two tasks to study in this work: (1)
subject-verb agreement, and (2) logical inference.
The first task was proposed by Linzen et al. (2016)
to test the ability of recurrent neural networks to
capture syntactic dependencies in natural language.
The second task was introduced by Bowman et al.
(2015b) to compare tree-based recursive neural net-
works against sequence-based recurrent networks
with respect to their ability to exploit hierarchical
structures to make accurate inferences. The choice
of tasks here is important to ensure that both mod-
els have to exploit hierarchical structural features
(Jia and Liang, 2017).

4 Subject-Verb Agreement

Linzen et al. (2016) propose the task of predict-
ing number agreement between subject and verb in
naturally occurring English sentences as a proxy
for the ability of LSTMs to capture hierarchical
structure in natural language. We use the dataset
provided by Linzen et al. (2016) and follow their
experimental protocol of training each model us-
ing either (a) a general language model, i.e., next
word prediction objective, and (b) an explicit super-
vision objective, i.e., predicting the number of the
verb given its sentence history. Table 1 illustrates
the training and testing conditions of the task.
Data: Following the original setting, we take 10%
of the data for training, 1% for validation, and the
rest for testing. The vocabulary consists of the 10k
most frequent words, while the remaining words
are replaced by their part-of-speech.

Table 1: Examples of training and test conditions
for the two subject-verb agreement subtasks. The
full input sentence is “The keys to the cabinet are

on the table” where verb and subject are bold and
intervening nouns are underlined.

Input Train Test

(a) the keys to the cabinet are p(are) > p(is)?
(b) the keys to the cabinet plural plural/singular?

Hyperparameters: To allow for a fair comparison,
we find the best configuration for each model by
running a grid search over the following hyperpa-
rameters: number of layers in {2, 3, 4}, dropout
rate in {0.2, 0.3, 0.5}, embedding size and num-
ber of hidden units in {128, 256, 512}, number
of heads (for FAN) in {2, 4}, and learning rate
in {0.00001, 0.0001, 0.001}. The weights of the
word embeddings and output layer are shared (Inan
et al., 2017; Press and Wolf, 2017). Models are op-
timized by Adam (Kingma and Ba, 2015).

We first assess whether the LSTM and FAN
models trained with respect to the language model
objective assign higher probabilities to the cor-
rectly inflected verbs. As shown in Figures 2a
and 2b, both models achieve high accuracies for
this task, but LSTMs consistently outperform
FANs. Moreover, LSTMs are clearly more ro-
bust than FANs with respect to task difficulty, mea-
sured both in terms of word distance and num-
ber of agreement attractors1 between subject and
verb. Christiansen and Chater (2016); Cornish et al.
(2017) have argued that human memory limitations
give rise to important characteristics of natural lan-
guage, including its hierarchical structure. Simi-
larly, our experiments suggest that, by compress-
ing the history into a single vector before making
predictions, LSTMs are forced to better learn the
input structure. On the other hand, despite having
direct access to all words in their history, FANs are
less capable of detecting the verb’s subject. We
note that the validation perplexities of the LSTM
and FAN are 67.06 and 69.14, respectively.

Secondly, we evaluate FAN and LSTM models
explicitly trained to predict the verb number (Fig-
ures 2c and 2d). Again, we observe that LSTMs
consistently outperform FANs. This is a partic-
ularly interesting result since the self-attention
mechanism in FANs connects two words in any po-

1Agreement attractors are intervening nouns with the op-
posite number from the subject.

RNN Transformer



A	scary	beast
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N=#layers



TRANSFORMER	ARCHITECTURE	
OVERVIEW
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Transformer	Architecture	Overview
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translation is funmachine

ENCODER

ENC-layer	2

Input	word		
embedding

ENC-layer	1

Self-Attention

Self-Attention



DECODER

Output	word	
embedding

DEC-layer	1

Transformer	Architecture	Overview
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translation is funmachine

la[EOS]

traduzione

DEC-layer	2

ENCODER

ENC-layer	2

Input	word		
embedding

ENC-layer	1

Self-Attention

Self-Attention

Self-Attention

Self-Attention
Enc-Dec	Attention



DECODER
la[EOS]

automatica

ENCODER

Transformer	Architecture	Overview
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translation is funmachine

traduzione

ENCODER

ENC-layer	2

Input	word		
embedding

ENC-layer	1

Output	word	
embedding

DEC-layer	1

DEC-layer	2

…
Enc-Dec	Attention

Self-Attention

Self-Attention



TRANSFORMER’S		
BUILDING	BLOCKS

Let’s	take	a	closer	look:

�50



Scaled	Dot-Product	Attention

�51

To	compute	attention	we	need	a	scoring	function	

• Dot-product	is	simple	and	fast	to	compute*	

• Rationale:	measure	similarity	of	two	(word-)vectors	

Problem:	for	high-dimensional	vectors,	softmax	gets	very	peaked	and	gradients	small		

=>	Solution:	scale	the	result	of	dot	product

*For	a	nice	overview	of	different	Attention	Scoring	Functions	see:	
https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3#ba24

score(qt, ki) = q⊤
t ki

score(qt, ki) = q⊤
t ki

d

translation is funmachine

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3#ba24


Query-Key-Value

�52

Now,	where	do	q	and	k	come	from?		

We	could	simply	use	the	word	vector														and	compare	it	
to	all	vectors	in	the	sentence	(including	itself)	

score(qt, ki) = q⊤
t ki

d

translation is funmachine

k1 k2(=qt) k3 k4

compare(q2,k1)	
=>	score



A	better	idea:	Learn	multiple	‘views’	of														to	use	as	query,	key	and	value

Query-Key-Value

�53

Now,	where	do	q	and	k	come	from?		

We	could	simply	use	the	word	vector														and	compare	it	
to	all	vectors	in	the	sentence	(including	itself)

translation is funmachine

softmax(score)	X	value

score(qt, ki) = q⊤
t ki

d

compare(q2,k1)	
=>	score

k1 q2q1 v1 k2 v2



A	better	idea:	Learn	multiple	‘views’	of														to	use	as	query,	key	and	value

Query-Key-Value
Now,	where	do	q	and	k	come	from?		

We	could	simply	use	the	word	vector														and	compare	it	
to	all	vectors	in	the	sentence	(including	itself)

translation is funmachine

k1 q2q1 v1 k2 v2

softmax(score)	X	value

score(qt, ki) = q⊤
t ki

d

compare(q2,k1)	
=>	score

Atenuon(Q̂, K̂, ̂V ) = sovmax( Q̂K̂⊤

d
) ̂V Q̂, K̂, ̂V = QWQ, KWK, VWV

= XWQ, XWK, XWV (self-attention)



We	are	not	done	yet	…
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Multi-Head	Attention

�56

Words	can	interact	with	each	other	in	different	ways.		

One	attention	distribution	may	not	be	enough	to	capture:	coreference	effects,	
topic	cohesion,	other	syntactic/semantic	relationships,	etc.	

Multi-Head	gives	the	attention	layer	multiple	representation	subspaces

translation is funmachine

h1

h2

concat

linear

Output	of	multi-headed	attention	for	input2		…	Finally!	

input2

head1
head2



is fun

head1
head2

Multi-Head	Attention
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translationmachine

h1

h2

concat

linear

input2

Output	of	multi-headed	attention	for	input2		…	Finally!	

MuluHead(Q, K, V ) = [head1; …; headh ]WO

where	headi = Atenuon(Q̂i, K̂i, ̂Vi)
= Atenuon(QWQ

i , KWK
i , VWV

i )



Add	&	Norm
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Last	ingredients:	

• Residual	connection	(He	et	al.	2015)	

• Layer	normalization	(Ba,	Kiros	&	Hinton)	

LayerNorm(SubLayer(x)	+	x)

g ( f (x)) → g ( f (x) + f )



‣ Is the vanishing gradient problem specific to RNNs?  

‣ No! Also for deep FFNN and ConvNets  

‣ Solution: add direct “skip” connections (ResNet, residual 
connections) - proposed by He et al., (2015) 

‣ i.e. add F(x) + x, instead of F(x) 

‣ allows for training deeper models

 59

Residual connections
Slide	by	Barbara	Plank

https://arxiv.org/pdf/1512.03385.pdf


Attention	in	the	Decoder

�60

Masked	Self	Attention:	

-	captures	target-side	context	

-	same	as	before,	but	can	only	look	at	
positions	before	the	current	word	(masked)	

Encoder→Decoder	Attention:	

-	captures	src-trg	translation	equivalences	

-	Query	comes	from	target	(decoder),										
Key	&	Value	from	source	(encoder)	

1

2

1

2

We	have	looked	at	self-attention	in	the	encoder	

Now	moving	to	the	decoder	=>	2	types	of	attention	here:



Attention	in	the	Decoder
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Masked	Self	Attention:	

-	captures	target-side	context	

-	same	as	before,	but	can	only	look	at	
positions	before	the	current	word	(masked)	

Encoder→Decoder	Attention:	

-	captures	src-trg	translation	equivalences	

-	Query	comes	from	target	(decoder),										
Key	&	Value	from	source	(encoder)

1

2

1

2

Q̂, K̂, ̂V = QWQ, KWK, VWV

= {XWQ, XWK, XWV

XWQ, YWK, YWV
(self	attention)

(enc→dec	attention)

We	have	looked	at	self-attention	in	the	encoder	

Now	moving	to	the	decoder	=>	2	types	of	attention	here:



DECODER

Output	word	
embedding

DEC-layer	1

Transformer	Architecture	Overview
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translation is funmachine

la[EOS]

traduzione

DEC-layer	2

ENCODER

ENC-layer	2

Input	word		
embedding

ENC-layer	1

Self-Attention

Self-Attention

Self-Attention

Self-Attention
Enc-Dec	Attention



Are	we	missing	anything?
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Positional	embeddings

�64

Recurrency	naturally	represents	the	order	of	words	in	a	sentence:	

w3	comes	after	w2	which	comes	after	w1	…	

Transformer	needs	an	explicit	way	to	represent	a	word’s	position

The	original	architecture	employs	this	function:

http://jalammar.github.io/illustrated-transformer/

Why?	Because	for	any	fixed	offset	k,	PEpos+k		
can	be	represented	as	a	linear	function	of	PEpos

http://jalammar.github.io/illustrated-transformer/


Putting	it	altogether

�65
https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html


RECURRENT	SEQ-TO-SEQ	VS	
TRANSFORMER

�66



RNN-seq2seq	vs	Transformer

• RNNs	(esp.	LSTM)	are	cognitively	inspired:	represent	memory	constraints	

• Transformer	=	result	of	clever	engineering	&	brute-force	architecture	search	

• Does	it	matter	for	MT	quality?	Maybe	not	

• In	fact	Transformer	is	state-of-the-art	in	MT	(and	beyond!)		

• Ability	of	RNN/Transformer	to	model	language	structure	is	hot	debate	topic

�67

Note:	This	lecture	did	not	cover	Convolutional	Neural	Networks.	These	also	work	quite	well	
for	MT	but	are	limited	to	capture	dependencies	that	fall	within	a	chosen	kernel	size.

✔	Much	more	parallelizable	

✔	Lower	complexity	

✔	Shorter	path	among	any	
input	positions

4732

(a) LSTM (b) FAN

Figure 1: Diagram showing the main difference be-
tween a LSTM and a FAN. Purple boxes indicate
the summarized vector at current time step t which
is used to make prediction. Orange arrows indicate
the information flow from a previous input to that
vector.

learn hierarchical structure with a set of controlled
experiments.

3 Tasks

We choose two tasks to study in this work: (1)
subject-verb agreement, and (2) logical inference.
The first task was proposed by Linzen et al. (2016)
to test the ability of recurrent neural networks to
capture syntactic dependencies in natural language.
The second task was introduced by Bowman et al.
(2015b) to compare tree-based recursive neural net-
works against sequence-based recurrent networks
with respect to their ability to exploit hierarchical
structures to make accurate inferences. The choice
of tasks here is important to ensure that both mod-
els have to exploit hierarchical structural features
(Jia and Liang, 2017).

4 Subject-Verb Agreement

Linzen et al. (2016) propose the task of predict-
ing number agreement between subject and verb in
naturally occurring English sentences as a proxy
for the ability of LSTMs to capture hierarchical
structure in natural language. We use the dataset
provided by Linzen et al. (2016) and follow their
experimental protocol of training each model us-
ing either (a) a general language model, i.e., next
word prediction objective, and (b) an explicit super-
vision objective, i.e., predicting the number of the
verb given its sentence history. Table 1 illustrates
the training and testing conditions of the task.
Data: Following the original setting, we take 10%
of the data for training, 1% for validation, and the
rest for testing. The vocabulary consists of the 10k
most frequent words, while the remaining words
are replaced by their part-of-speech.

Table 1: Examples of training and test conditions
for the two subject-verb agreement subtasks. The
full input sentence is “The keys to the cabinet are

on the table” where verb and subject are bold and
intervening nouns are underlined.

Input Train Test

(a) the keys to the cabinet are p(are) > p(is)?
(b) the keys to the cabinet plural plural/singular?

Hyperparameters: To allow for a fair comparison,
we find the best configuration for each model by
running a grid search over the following hyperpa-
rameters: number of layers in {2, 3, 4}, dropout
rate in {0.2, 0.3, 0.5}, embedding size and num-
ber of hidden units in {128, 256, 512}, number
of heads (for FAN) in {2, 4}, and learning rate
in {0.00001, 0.0001, 0.001}. The weights of the
word embeddings and output layer are shared (Inan
et al., 2017; Press and Wolf, 2017). Models are op-
timized by Adam (Kingma and Ba, 2015).

We first assess whether the LSTM and FAN
models trained with respect to the language model
objective assign higher probabilities to the cor-
rectly inflected verbs. As shown in Figures 2a
and 2b, both models achieve high accuracies for
this task, but LSTMs consistently outperform
FANs. Moreover, LSTMs are clearly more ro-
bust than FANs with respect to task difficulty, mea-
sured both in terms of word distance and num-
ber of agreement attractors1 between subject and
verb. Christiansen and Chater (2016); Cornish et al.
(2017) have argued that human memory limitations
give rise to important characteristics of natural lan-
guage, including its hierarchical structure. Simi-
larly, our experiments suggest that, by compress-
ing the history into a single vector before making
predictions, LSTMs are forced to better learn the
input structure. On the other hand, despite having
direct access to all words in their history, FANs are
less capable of detecting the verb’s subject. We
note that the validation perplexities of the LSTM
and FAN are 67.06 and 69.14, respectively.

Secondly, we evaluate FAN and LSTM models
explicitly trained to predict the verb number (Fig-
ures 2c and 2d). Again, we observe that LSTMs
consistently outperform FANs. This is a partic-
ularly interesting result since the self-attention
mechanism in FANs connects two words in any po-

1Agreement attractors are intervening nouns with the op-
posite number from the subject.

RNN Transformer



Interpretability
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Taken	from	(Bahdanau	et	al.	2015)
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Figure 4: Two attention heads, also in layer 5 of 6, apparently involved in anaphora resolution. Top:
Full attentions for head 5. Bottom: Isolated attentions from just the word ‘its’ for attention heads 5
and 6. Note that the attentions are very sharp for this word.
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Figure 5: Many of the attention heads exhibit behaviour that seems related to the structure of the
sentence. We give two such examples above, from two different heads from the encoder self-attention
at layer 5 of 6. The heads clearly learned to perform different tasks.
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Figure 5: Many of the attention heads exhibit behaviour that seems related to the structure of the
sentence. We give two such examples above, from two different heads from the encoder self-attention
at layer 5 of 6. The heads clearly learned to perform different tasks.

15Taken	from	(Vaswani	et	al.	2017)
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Is	this	really	more	interpretable..?
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Figure 4: Two attention heads, also in layer 5 of 6, apparently involved in anaphora resolution. Top:
Full attentions for head 5. Bottom: Isolated attentions from just the word ‘its’ for attention heads 5
and 6. Note that the attentions are very sharp for this word.
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NMT	INFERENCE	(DECODING)	&		
WORD	SEGMENTATION
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NMT	Decoding
• A	simple	beam-search	procedure	is	usually	sufficient	to	produce	high-
quality	translations

• A	typical	beam	size:	5		

• Works	better	than	1	
(greedy	decoding)	

• Larger	beam	does	not	
mean	better	results	in	
general

http://opennmt.net/OpenNMT/translation/beam_search/

http://opennmt.net/OpenNMT/translation/beam_search/


Word	Segmentation
• Early	NMT	models	were	trained	at	level	of	words	(space-delimited	tokens):	

- Vocabulary	was	limited	at	the	top	N	frequent	words	

- Rare	words	mapped	to	<unk>	

• Character-level	NMT	has	also	been	widely	studied:	

- Suitable	for	morphologically	rich	languages		

- Sequences	become	longer	→	capturing	dependencies	more	difficult	

- Character/word	hybrid	modeling	strategies	exist	but	are	typically	
complex	and	expensive	

• A	practical	compromise:	Subword	segmentation	

- Simple	data-driven	segmentation	models	(BPE,	Sentence	Piece)	work	
quite	well*.	Idea:	Only	segment	less	frequent	substrings	

- New	words	can	always	be	segmented	→	no	more	<unk>	tokens

 

SRC			health	research	institutes	
REF			Gesundheitsforschungsinstitute	
NMT	Gesundheits|forsch|ungsin|stitute

*Finding	optimal	segmentation	techniques	for	MT	is	an	open	research	topic	(see	e.g.	Ataman	&	Federico,	2018)

http://opennmt.net/OpenNMT/translation/beam_search/


EVALUATION
We	need	to	talk	about
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MT	Evaluation
• Evaluating	MT	is	almost	as	hard	as	MT	itself!	

• Potentially	infinite	ways	to	translate	the	same	sentence	correctly

IT					Sono	venuta	ad	Atene	per	tenere	questa	lezione.	
		
EN			In	order	to	give	this	lecture	I	have	come	to	Athens.	
								To	teach	this	class	I	have	come	to	Athens.	
								To	give	this	lecture	I	have	traveled	to	Athens.	
								I	have	come	to	Athens	in	order	to	give	this	lecture.		
								…

Typical	solution:		

• Collect	n	reference	translations	

• Compare	MT	output	to	references		

• More	overlap	→	Better	translation	

Everything	has	changed	in	MT,	but	the	most	widely	used	metric	is	still…
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BLEU!
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BLEU	(Papineni	&	al.	2002)

• Computed	over	the	whole	test	corpus	to	avoid	zero	counts	

• Recall	cannot	be	trivially	computed,	therefore	Brevity	Penalty	is	used	to	
penalize	short	outputs

A	modified	average	of	n-gram	precisions	(usually	with	n	in	[1..4])

Brevity	penalty Geometric	mean	of	
n-gram	precisions

BLEU-n = min (1, output-length

reference-length) ×
n

∏
i= 1

precision( 1
n )

i

precisioni =
#correct-ngrams*

i

#total-ngramsi

*Nb	of	correct	ngram	X	is	‘clipped’	to	max	count	of	X	in	any	reference	(see	paper	for	details)

�76



BLEU	(Papineni	&	al.	2002)

precisioni =
#correct-ngrams*

i

#total-ngramsi

A	modified	average	of	n-gram	precisions	(usually	with	n	in	[1..4])

Brevity	penalty Geometric	mean	of	
n-gram	precisions

BLEU-n = min (1, output-length

reference-length) ×
n

∏
i= 1

precision( 1
n )

i

Example	(with	n=2)	

REF1				in	order	to	give	this	lecture	I	have	traveled	to	Athens				(ℓ=11)	
REF2				I	came	to	Athens	in	order	to	give	this	lecture																		(ℓ=10)	
		
MT						to	teach	this	class	I	have	come	to	Athens																										(ℓ=9)

precision1 = 6/9 = 0.67
precision2 = 2/8 = 0.25

BLEU-2 = 0.9 × (0.67( 1
2 ) × 0.25( 1

2 )) = 0.37BP = 9/10 = 0.9
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Example	(with	n=2)	

REF1				in	order	to	give	this	lecture	I	have	traveled	to	Athens				(ℓ=11)	
REF2				I	came	to	Athens	in	order	to	give	this	lecture																		(ℓ=10)	
		
MT						to	teach	this	class	I	have	come	to	Athens																										(ℓ=9)

BLEU:	Issues
• Only	exact	lexical	matches	count		

• Synonyms,	paraphrases,	or	morphological	variants	don’t	count	

• Most	of	the	time	only	1	reference	is	available	:(

Translation: SrcLang(meaning	X) → TrgLang(meaning	X)
Summarization: Text(X) → ShortText(X)
Paraphrasing: Sentence(X) → Sentence’(X)

• Similar	issues	affect	evaluation	of	other	generation	tasks:

�78

• Finding	MT	metrics	that	correlate	well	with	human	judgement	is	a	
research	field	on	its	own	(with	dedicated	shared	task	at	WMT)



OPEN	ISSUES	IN	MT
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MT:	Human	parity?

Yes:	MT	quality	has	greatly	improved	thanks	to	the	neural	revolution,	
but…		

• translation	quality	considering	(document-level)	context	is	still	shaky	

• recent	studies	reveal	biases	and	lack	of	sistematicity	in	NMT	

• NMT	is	very	data	hungry!	

• dealing	with	rich	vocabularies	(morphology)	is	still	hard

Achieving Human Parity on Automatic

Chinese to English News Translation

Hany Hassan, Anthony Aue, Chang Chen, Vishal Chowdhary, Jonathan Clark,

Christian Federmann, Xuedong Huang, Marcin Junczys-Dowmunt, William Lewis,

Mu Li, Shujie Liu, Tie-Yan Liu, Renqian Luo, Arul Menezes, Tao Qin,

Frank Seide, Xu Tan, Fei Tian, Lijun Wu, Shuangzhi Wu, Yingce Xia,

Dongdong Zhang, Zhirui Zhang, and Ming Zhou

Microsoft AI & Research

Abstract

Machine translation has made rapid advances in recent years. Millions of people are using

it today in online translation systems and mobile applications in order to communicate across

language barriers. The question naturally arises whether such systems can approach or achieve

parity with human translations. In this paper, we first address the problem of how to define

and accurately measure human parity in translation. We then describe Microsoft’s machine

translation system and measure the quality of its translations on the widely used WMT 2017

news translation task from Chinese to English. We find that our latest neural machine trans-

lation system has reached a new state-of-the-art, and that the translation quality is at human

parity when compared to professional human translations. We also find that it significantly

exceeds the quality of crowd-sourced non-professional translations.

1 Introduction

Recent years have seen human performance levels reached or surpassed in tasks ranging from games
such as Go [32] to classification of images in ImageNet [20] to conversational speech recognition on
the Switchboard task [49].

In the area of machine translation, we have seen dramatic improvements in quality with the
advent of attentional encoder-decoder neural networks [34, 3, 38]. However, translation quality
continues to vary a great deal across language pairs, domains, and genres, more or less in direct
relationship to the availability of training data. This paper summarizes how we achieved human
parity in translating text in the news domain, from Chinese to English. While the techniques we
used are not specific to the news domain or the Chinese-English language pair, we do not claim that
this result necessarily generalizes to other language pairs and domains, especially where limited by
the availability of data and resources.

Translation of news text has been an area of active interest in the Machine Translation com-
munity for over a decade, due to the practical and commercial importance of this domain, the
availability of abundant parallel data on the web (at least in the most popular languages) and a
long history of government-funded projects and evaluation campaigns, such as NIST-OpenMT1

and GALE2. The annual evaluation campaign of the WMT (Conference on Machine Translation)
[6], has also focused on news translation for more than a decade.

Defining and measuring human quality in translation is challenging for a number of reasons.
Traditional metrics of translation quality, such as BLEU [28], TER [33] and Meteor [10] mea-
sure translation quality by comparison with one or more human reference translations. However,
the same source sentence can be translated in sometimes substantially different but equally cor-
rect ways. This makes reference-based evaluation nearly useless in determining quality of human
translations or near-human-quality machine translations.

1https://www.nist.gov/itl/iad/mig/open-machine-translation-evaluation
2https://www.nist.gov/itl/iad/mig/machine-translation-evaluation-gale

1

March	2018:	Microsoft	
claims	human	parity	on	a	
very	difficult	language	pair
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NMT	vs	SMT

What	has	been	solved	(or	extremely	improved)	by	NMT*:	

✓models	capture	distributional	semantics	of	words	and	phrases		

✓overall	grammaticality	of	output	sentences	

in	particular:	word	reordering,	long	dependencies

�81

e * = arg max
e

p( f |e) p(e)
e * = arg max

e
pNMT(e | f )

New	(or	exacerbated)	issues	in	NMT:	

- how	to	make	use	of	large	monolingual	data	

- learning	representations	of	rare	words	

- poor	model	interpretability,	makes	it	difficult	to:	

- ‘debug’	translation	errors	

- enhance	models	with	expert	knowledge	(e.g.	
terminologies	or	morphological	lexicons)



REFERENCES	&	USEFUL	LINKS
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An	(incomplete)	list	of	references	(I)
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-	Statistical	Machine	Translation	(Phrase-Based	and	Beyond):	
[Koehn,	2012]	Statistical	Machine	Translation.	Cambridge	University	Press.	
[Bisazza	&	Federico,	2016]	A	Survey	of	Word	Reordering	in	SMT:	Computational	Models	and	
Language	Phenomena.	Computational	Linguistics.	
-	Early	attempts	to	NMT	in	the	90’s:	
[Castano	&	Casacuberta,	1997]	A	connectionist	approach	to	MT.	In	Proc.	of	EUROSPEECH.	
[Forcada	and	Neco,	1997]	Recursive	hetero-associative	memories	for	translation.	In	Proc.	of	
IWANN.	
-	Foundations	of	modern	NMT:	
[Kalchbrenner	&	Blunsom,	2013]	Recurrent	Continuous	Translation	Models	
[Sutskever	et	al.	2014]	Sequence	to	Sequence	Learning	with	Neural	Networks	
[Cho	&	al.	2014]	Learning	Phrase	Representations	using	RNN	Encoder-Decoder	for	Statistical	MT	
[Bahdanau	&	al,	2015]	Neural	Machine	Translation	by	Jointly	Learning	to	Align	and	Translate		
[Vaswani	&	al.	2017]	Attention	Is	All	You	Need.	
-	Influential	NMT	system	papers:	
[Wu	&	al.	2016]	Google’s	Neural	MT	System:	Bridging	the	Gap	between	Human	and	MT.	
[Hassan	&	al.	2018]	Achieving	Human	Parity	on	Automatic	Chinese	to	English	News	Translation.	
-	Word	segmentation:	
[Sennrich	&	al.	2016]	NMT	of	Rare	Words	with	Subword	Units.		
[Kudo	&	Richardson,	2018]	SentencePiece:	A	simple	and	language	independent	subword	tokenizer	
and	detokenizer	for	Neural	Text	Processing.		
[Ataman	&	Federico	,	2018]	An	Evaluation	of	Two	Vocabulary	Reduction	Methods	for	NMT.



An	(incomplete)	list	of	references	(II)
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-	BLEU	evaluation	metric:	
[Papineni	&	al.	2002]	BLEU:	a	Method	for	Automatic	Evaluation	of	Machine	Translation	
[Callison-Burch	et	al.	2006]	Re-evaluating	the	Role	of	BLEU	in	Machine	Translation	Research	
[Federmann,	2011]	How	can	we	measure	machine	translation	quality?		
[Dorr,	2011]	Machine	Translation	Evaluation	

- SMT	vs	NMT:	
[Bentivogli	&	al.	2018]	Neural	versus	Phrase-based	MT	quality:	An	in-depth	Analysis	on	English–
German	and	English–French	

-	Interpretability/Linguistic	probing	of	NMT	models:		
[Shi	&	al.	2016]	Does	string-based	neural	MT	learn	source	syntax?		
[Belinkov	&	al.	2017]	What	do	neural	machine	translation	models	learn	about	morphology?	
[Sennrich,	2017]	How	Grammatical	is	Character-level	NMT?	Assessing	MT	Quality	with	Contrastive	
Translation	Pairs	

- RNN-seq2seq	vs	Transformer:	
[Tran	&	al.	2018]	The	importance	of	being	recurrent	for	modeling	hierarchical	structure	
[Tang	&	al.	2018]	Why	self-attention?	a	targeted	evaluation	of	neural	machine	translation	
architectures

http://lodel.irevues.inist.fr/tralogy/index.php?id=76&format=print
https://www.cs.cmu.edu/~alavie/papers/GALE-book-Ch5.pdf


Useful	Links
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-	Transformer	paper	annotated	with	code:	
http://nlp.seas.harvard.edu/2018/04/03/attention.html	
-	The	illustrated	Transformer:	
http://jalammar.github.io/illustrated-transformer/	
-	Attention?	Attention!	(blogpost	on	the	concept	of	attention	and	its	variants):		
https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html	

-	Choose	your	NMT	toolkit:	
Joey	NMT:	A	Minimalist	NMT	Toolkit	for	Novices	(Kreutzer,	Bastings,	Riezler,	2019)	
The	paper	contains	an	extensive	list	of	other	toolkits	and	their	features

http://nlp.seas.harvard.edu/2018/04/03/attention.html
http://jalammar.github.io/illustrated-transformer/
https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
https://www.cl.uni-heidelberg.de/~kreutzer/joeynmt/joeynmt_demo.pdf
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Thanks for your 
attention!

AthNLP2019																				23	Sept	2019


