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Challenge: Language is ambiguous

Galactic bubbles offer clues to dark matter
Space Daily - 22 hours ago

I"’"‘:‘;‘W

Wour > 4 Ao, s,
[ we fomg Clugs?

lllustration drawn by Dirk Hovy.



Challenge: Language is productive

How to sunny-day Saturday in Seattle:
pop out of bed and fling open the drapes

brew coffee *® and grab your go-cup

get outside asap

dog walk, hike, run, bike, kayak, sail

11 soak up the sun in your favorite beer garden
& o:

O 2 (] Q 22 =

https://twitter.com/seattlekim/status/1106687539279101954



Sequence Modeling Tasks

» In some applications, we want to condition
on sequential data to make a prediction

Avror Armeures

SenmmenT AwpLyss

» In other applications, we want to generate
sequential data punct

nsub obj nam\
/\ /\

¢ condition problems: }
. how to representa
sequence? |

generation
¢ problems: howto
¢ decode a sequence? }

PRON VERB PNAME PNAME PUNCT

Inspired by slides from Chris Dyer & Dirk Hovy.

|
| like Vince Gilligan



A step back...
How did the field evolve?



NLP ' Machine Learning

» Early approaches in NLP: symbolic & rule-based

» In the late 80s: development of annotated corpora (especially
the well-known Penn Treebank Wall Street Journal)

THE WALL STREETJOURNAL. === —

ngg RN “.'

‘"\.
MADMTPLME
aw

» And corresponding emergence of statistical approaches

» Common evaluation corpora and measures pushed the field

80s™,



First big jump: statistical learning

X: the dog barks

Symbolic Statistical |
: 1f prev w = DET and ..
Processing NLP tag=NOUN

eq Brill’s from 0 Collin’s
hand-crafted

tagger (1992) rules to ML perceptron (2002)

rule-based structured

X:1110l.lol1]o0

! !

w_i=dog w_i-1=the

classic sparse 'n-hot’ encoding

approx. 1980s



The emergence of
deep learning (in NLP)



In Speech Recognition

Loud and clear

_ et _ 0y
Speech-recognition word-error rate, selected benchmarks, % Log scale

100

Switchboard

Switchboard cellular
— Meeting speech

Broadcast :
speech IBM, Switchboard 0
The Switchboard corpus is a collection of recorded
telephone conversations widely used to train and
test speech-recognition systems
1
| | I | | | | I |

1993 95 93 2000 02 04 06 08 10 12 14 16
Sources: Microsoft; research papers

(Source: The Economist) 2 01 O W;



In Computer Vision

| La

Visual Recognition Challengel
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The Image Classification Challenge:
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(src: slide by Fei-Fei Li)
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Papers: Deep learning in NLP

- “2015 seems like the year when the full force of the
tsunami hit the major NLP conferences”

—Chris Manning (20135]

“neural|deep learning™

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

*(incl. variants of RNN/CNNs and excl. deep parsing)

Titles of papers in ACL anthology (from 2004)

12



NLP ' Deep Learning

Symbolic Statistical
Processing NLP

dog: [0.2]0.1]0.2J0.3]0.1

from 7 :
presentation _
hand-crafted . barks: [0.1[0.3[0.3[0.1]0.2

rules to ML

dense representations
([embeddings]

Epoch 3

approx. 1980s 2015

13
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Predicting the next word:
A Simple (?) Exercise

» WWW.mentimeter.com
Room: (see code)

* (title inspired by Graham Neubig)

15


http://www.mentimeter.com

More examples

» Recurrent Neural

» ... Is perhaps the best ____

https://books.google.com/

Is perhaps the best known

Is perhaps the best example

is perhaps the best way
Is perhaps the best of
is perhaps the best place

iIs perhaps the best and
IS perhaps the best in

is perhaps the best method
is perhaps the best that
Is perhaps the best for

) 1900 1920 1940 1960 1980 2000

16



Why care about LMs?

Verena Rieser @verena_rieser -
Great talk by @ Thom_Wolf on transfer learning @reworkAl !

LAY ,-': .lg’" / in 23rn »

1S 3 ver diffic 5

learn Syntax s / i L
emantics. enc Code facts about 1t

https://twitter.com/verena_rieser/status/1174694748310953984

O () Q O



https://twitter.com/verena_rieser/status/1174694748310953984

So let’s look deeper at LMs:
from traditional LMs to
contextualized embeddings



What is a Language Model (LM)?

» A computational model that can be used to either of the
following two tasks is called a Language Model (LM):

» to compute the probability of a text*

P(today is a great day) = ??
» to compute the probability of the next word

P(day|today is a great) = ??

* (can be a text, sentence, phrase,...)

19



Why?
Example Use Cases



Speech Recognition

P(where is the nearest beach) > P(where is the nearest breach)

http://www.personal.psu.edu/ejp10/blogs/tlt/2011/09/understanding-speech-recogniti.html

21


http://www.personal.psu.edu/ejp10/blogs/tlt/2011/09/understanding-speech-recogniti.html

Spelling Correction

eeeco Verizen T 11:28 AM o} 79% .

@ ® ®

Be there'soon

~E
I'm walking over now should
| go by your place?

I'm walking out
Ok. I'm outside @®

What time shul (4]
( should )
giwlelrjtiyiujijolp

alsjdifiglhljlkl!

B ZIxiclivibinimiE

122 @& O space return

— —
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http://www.personal.psu.edu/ejp10/blogs/tlt/2011/09/understanding-speech-recogniti.html

You probably use a LM every day...

what is the mo

Q)

what is the mo - Google Search

what is the most spoken language in the world
what is the most played game in the world
what is the most dangerous animal in the world

what is the most expensive car in the world

o0 P PO p o PO

what is the moon made of

23


http://www.personal.psu.edu/ejp10/blogs/tlt/2011/09/understanding-speech-recogniti.html

You probably use a LM every day...

arianna bisazza

Subject

Dear Arianna

24


http://www.personal.psu.edu/ejp10/blogs/tlt/2011/09/understanding-speech-recogniti.html

A Language Model - Formally

» Given a sequence of words: (w,,...,w,)
» LM models the probability: Pw,,...,w,)

» Without loss of generality (Chain Rule):

/'5*'0/)/

d Ey S A (=S A
= P(wl)H P(w, \wl, ey Wi

P(Athens|an awesome summer school this year is in)

25



Markov assumption

» A common assumption in sequence modeling is to make
the Markov assumption:

d d
Pxy,...,xy) = HP(xl-lxl, ces X)) R HP(xi|xi_(n_1), cos X))

p(w) =p(w1)X
ov:. 1o / .
p(wa | wy)x MarKov. forget “distant' post
p(ws | @, we) X Valid for language? /\/o...
P(’w4 AWelia, W3 ) X Is it practical? Often!

n-th order Markov assumption:
history of n-1 words

Adapted from Chris Dyer 26



How to learn a LM?

» (Pre-deep learning) era: Learn an n-gram Language Model

» n-gram: a chunk of consecutive words

» n=2 (bigram): “to buy”, “buy a”, “a house”...
» n=3 (trigram): “to buy a”, “buy a house”, ...

» Key method: collect statistics of n-grams from a corpus to
estimate the parameters of the model (maximum likelihood)

27



Unigram LM (1storder)

» n=1, Tst order Markov assumption, history (n-1): O

Pwy, ..., wy) = P(w)P(wy)P(ws)...
d
= HP(WZ-)
i=1

P(started) anjgrom L/

8 00 0
)

‘an_Anll

network cat beerweather city water

P(

28



Bigram Language Model

» n=2, 2nd order Markov assumption, history (n-1): 1

Pwy, ..., w)) = P(w)P(w, | wp)P(w;|w,)...

d
= Pw) | [ Pow,Iw,_))
=2

P(started|has) L9701 ./

29



Higher-order LMs

» A bigram model conditions on the previous word (n=2; or:
a window of 2 words)

P(x; | x;_)

» A trigram model uses a history of 2 words (n=3, history 2)

P(x; | x;_n, x;_1)

» E.g. a 5-gram LM

30



Sparsity problems with n-gram LMs

! Sparsity problem 1: If “its water is so |
¢ W” never occurred in the corpus: prob }
' for w is 0! £

C(its water is so w)

P(w|its water is so) =

C(its water is so)

i Sparsity problem 2: If “its water is s0” }
{ never occurred: prob forany wisis 0. }

C=count()

What can we do? Smoothing
(add small count to every w)

What can we do? Backoff
(condition on lower-level n-grams)

See for more details chapter 3 of Jurafsky & Martin.

Adapted from Abigail See

31


http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf

Further issues with n-gram LMs

» What about similar words?

cannot share strength

among similar words

» she bought a bicycle

» she purchased a bicycle

» Long-distance dependencies?

» for programming she yesterday
purchased her own brand new

laptop

cannot handle long-
distance dependencies

» for running she yesterday purchased
her brand new sportswatch

Adapted from Graham Neubig 32



Generating text from
a LM



Sample from a unigram LM

» We can sample incrementally from a Language Model,
one word at a time

the cat sits

network cat beer weather city water sits

34



Sample from a unigram LM

» We can sample incrementally from a Language Model,
one word at a time

word sodad? sequences | sequentiod Aata!

cat > sits > the

network cat beer weather city water sits

35



Outlook: Why RNNs are so great for
Language

» No more Markov assumptions
» Great fit for seguences | sequentiod doto-

» Arbitrary length input

the > cat > sits

the cat sits there
the sleepy cat sits there

the sleepy cat which chased the dog sits

36



How to learn a neural LM?

» Language model task:

» input: sequence of words: (W5 oo Wy)

» output: probability of next word P(w,, | \t ey Wo, W)

» An Early (deep learning era) solution: a window-based n-
gram neural language model (Bengio et al., 2003)

A neural probabilistic language model

Y Bengio, R Ducharme, P Vincent, C Jauvin - Journal of machine leaming ..., 2003 - jmir.org
A goal of statistical language modeling is to learn the joint probability function of sequences
of words in a language. This is intrinsically difficult because of the curse of dimensionality: a
word sequence on which the model will be tested is likely to be different from all the word
sequences seen during training. Traditional but very successful approaches based on n-
grams obtain generalization by concatenating very short overlapping sequences seen in the
training set. We propose to fight the curse of dimensionality by learning a distributed ...

Y D9 Cited by 5046 Related articles  All 57 versions o

teed—forword neuarod rnetwork




Window-based neural LM via FFNN

Ajsc.Ord h
fixed window of »n words

38


http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf

Foundotions

Overview

s

\_

PN

Motﬁtion,

Brief History, Overview |

=
Back to the roots:

Language Models

Feedforward NNs
(FFNNs)

~

39



Feedforward Neural Network (FFNN)

» After this recap you should:
» connect the different views on FFNNs

» refresh ourselves on how to represent input in NLP

40



Neural Network

41



From biological to artiticial

" Neuron mcculloch & Pitt (1943)

.‘7:‘|
| \ Cell body
Tl X f
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Multiple neurons

£, R* - R?
A3 Ws
—{W
42 —
X4

44



FFNN: abstract & functional view

y = softmax(f,(f,(x))) error = 10Ss(y, )

» Each layer is a » Using the chain rule,
function, acts on the we can compute the
output of the layer I derivative (gradient)

below (input) of the Error wrt any

of the intermediate
» Given the true fl I

» Final output: cascade
of functions

layer weights
outputy, we

(Lecture 1)
compute the error Er .

“vanilla” Neural Network



FFNN: Graphical view

y = softmax(f,(f,(x)))

fulZ/—aaﬂrze&f-ed
layers
/i &M w!
|




Multiple neurons: Vectorization

f,: R* - R?

O 1s the layer’s
(non-linear)
activation
function

X~ W21

Z=o0(X-W+Db)

- linear projection followed 3
by non-linearity

Sigmoid

",(‘) ] %

Hyperbolic Tangent

f -

olz)

e® ¢

Rectified Linear

(2) 0 ifz<10
M r ifz20

From Hughes and Correll 2016



Connecting the views: FFNNs (MLPs)

NN,y p(X) = g(xW1! + b )W? + b?

48



Computation Graph View

v loss

Whort is xZ

parameters

49
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What does ‘eienskappe’ mean?

left context
wa: help lei het tot sy ontdekking. Die asteroide se wentelbaan het chaotiese
peperk. 1943 - Albert Hofmann skryf sy eersie verslag van die hallucinogenic
ou klere is vuil, jou vroutjie die huil”. In "Die spinnckop en viieg” beskryf hy die
r betrokke was. As gevolg hiervan is 'n patroon en vuurwapen gescek wat die
assaproduksie. Die AK-47 kan gesien word as 'n sameamelting van die beste
'yne as dekoratiewe plante, werd die plant ook gebru k vir die geneeskragtige
se Ebers-pap rus uit ongeveer 1552 v.C. verwys na die azlwyn se med sinale
ende Kerstyd ryp word. Die Khoikhoi het reeds hierdie plant vir sy med sinale
erte is vir gryp aangepas. terwyl altwee groepe se 0é veorwaarns gerig is. Die
iemetazlstovave gebruik het wat wateronoplosbaar en verhittingshestand is —
aling van die Son en maax so lewe op land moontlik.[19] Die Aarde se fisiese
astelancsplaal is onder seevlak. Hierdie onderwater opperviak het bergagtige
slag 'n 'n gebied word bepaal deur die dominants windrigting, die topologiese
Wetenskaplikes maak weer eens van seismiese golfsnelheid gebruik om- die
die warm manielgesteentes die nig hinnegedring het, verlnor dit die p/astiese
oor dit die p astiese eienskappe, en by dié "stolling" verkry dit die magnetiese
by die poolstreke binne — vandaar die pooligte. Sou die aarde se magnetiese

te ontwikkel) om aan besoncere kriteria i@ volcoen, sooe veiligheid, estetiese

KWIC
eienskappe
eienskappe
cienskappe
eienskappe
eienskappe
eienskappe
eienskappe
eienskappe
cienskappe
eienskappe
eienskappe
eienskappe
eienskappe
eienskappe
eienskappe
eienskappe
eienskappe

eienskappe

right context
, 'wat langtermynvoorspellings bemoeilik. Voor 500n.C. kon dit by die Son-Aar
van LSD. 1954 - VSA senator Joseph McCarihy begin verhore om die VSA le
van die spinnekop en hee hy die vlieg met listigheid vang, waarna hy die viieg
van 'n submasjiengeweer (hoékapasiceit-magasyn en ten volle outomatese v
vandie M* Garand en die StG44 Met cie aanvanklike vervaardiging was das
wat daaraan toegeskryf word. Hierdie plante word ook in rotstekeninge van d
en die gebruix daarvan in die balsem van lyke. Die meeste van Suid-Afrikaan:
gewaardeer en die Boere het d't oorgeneem. Dit is veral s purgeermiddel ge
van elke aapgroep s beter verstaanbaar deur cit as 'n atsoncerlike spesie te |
wat ook hierdie oksiede het. Die besef dat hierdie aardes nie elemente was ni
, geologese geskiedenis en posisie in cie Sonnestelsel maak die volgehoue |
, met bergreekse, vulkane, iroe, skeurdalle, plato's en viaktes, Die oorblywen:
en die temperatuurversxil e.[69] Ondznks die plaaslike verskille kan die Aarde
van die rotslae te bepaal. Die vernaamste kenmerke van die gesteentes word
, en by cie "stalling" ver«ry dit die magnetiese eienskappe van die heersende
van die heersende magnestveld. dit word met ander woorde gepolarseer Die
me’ dié van n gewone staafmagneel vergelyk werd, sal die as wat van pcol ¢

, ekonomiess geleenthede, die bewaring van cie bestaande naiuurlixe erfenis

Keyword in Context (KWIC)



Distributional Hypothesis

"You shall know a word by the

company it keeps"
(Firth, J. R. 1957:11)

52



The company it keeps

» Key idea in NLP: the meaning of a word is represented by
the words which occur frequently close to it

» One of the most successful ideas in NLP

» Nowadays, we talk about representations

53



What are good representations?

» Representations are distinct

» Similar words (or units) have similar representations

54



Traditional sparse text encoding:
BOW

bag-of-words




Sparse binary text encoding: BOW

1 R = ey T =W Ty o
cool <3
a waste of time
great movie

lo@iasian) Clasiliiiciinslo) Gulaslnl Gl

IS

boring
waste

Ccool
<3
of

time

movie
just

= [this

~ | great

n-hot encoding




One-hot encoding

» Sparse high-dimensional vector of dimension |V| (=size of
vocabulary)

Symbol (word, char,..) yellow
one-hot vector [OOOO .OOOO]

(length V, one entry is 1)
1x|V|

57



One-hot encoding: Sparse binary repr.

» sb: sparse binary representation
V = {cat, dog, table}

fyp(cat) =[1,0,0]

fyp(dog) =[0,1,0]
dog 4
1 f.,(table) = [0,0,1]

Ca/\fble
1 1

cos(f,(cat), f,,(dog)) =0

(lNustration adapted from S. Riedel)

58



Sparse binary representations

» Representations are distinct /
» Similar symbols have similar representations x

» Despite of this, n-hot representations are often very
powerful for text classification.

59



From sparse high-dim
to continuous low-dim



Dense continuous: Embeddings

» “Embed” symbol [z (W) — R
in dense low-dimensional space (d << |V|)

» Dimensionality d (hyperparameter)

V = {cat, dog, table} d="72

| V| xd
embedding matrix

Note: d < |V|

61



Lookup: Representing a symbol

lineor projection from U/=>A

symbol — one-hot » word embedding
i
book (O@O0O..00) x (0000 =100
.................... v
...................... .[ Q0 ]
sparse binary one-hot, dense, continuous
high-dimensional (V) [. 0 O] representation
- low-dimensional (d)
0000
00 9)

embedding matrix

Ad apted fro m I—eCt ure 5 (R | ed e I) http://web.stanford .edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf

62


http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf
http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf

In general, the neural way for
extracting features:

» Extract core linguistic features 7 .
» Define a vector for each feature (lookup Embedding table)

» Can train representation E together with the network

63



Computational Graph View

v loss

@ parameters
@ O functions

\ >
AN
@ w! troin with network
e (model porometers)

\
i

/ oy

64



Dense continuous text encodings

T 110 L 5 T = I

cool <3
this IS great !
000 0000 (0000000
cool <3
000 00009

How +o combine word embedd/'njs?



Dense continuous text encoding:
e.g. continuous BOW (CBOW)

Example input document 1: @
cool <3 /f\
Q09
CBOW(w,...w,) = ¥ E[w, (O@@O) nprojection + CBOW
/ 4
cool ? <3

[ ..O] ";[...O] lookup

COO00.00) 0®OO.O0] n-hot




Dense continuous text encoding:
e.g. continuous BOW (CBOW)

Example input document 2:
| AR P P ) 1y S == o /r\

|O@ O @) CBOW representation

A

CBOW(w;,...w,) = » E[w)]

l this great !

000® +[00|SQO]+[ QQO]J,[QQ'QQ




Limitation of BOW

» What's the biggest limitation of BOW/CBOW?

» Similar to unigram model: It disregards the order of
items (e.g. words in a sequence)

» Example:
» “it was not good, it was actually terrible”
» “it was not terrible, it was actually good”

» A simple solution?

68



Possible Improvement

» Bag of n-grams
» “not good”, ...
» Problems:

» Parameter explosion (BOW/n-hot) or even more
averaging (CBOW)

» No sharing between similar words & n-grams

69



Where to get task-specific E from?
From Scratch vs Pre-trained
» Embedding layer E:

» trained with network from scratch - task-specific

» initialized with off-the-shelf pre-trained word
embeddings (e.g., Glove, Polyglot, fastText)

» Pre-trained embedding initialization typically leads to
performance gains. Why?

» train on more words
» implicitly more data

» Ways to obtain off-the-shelf embeddings? (word vector
space representationy)

70



Embeddings: New? No!

» Two major methods:

» Count! (pre-deep learning method, aka “word vector
space models”)

» Predict! (core idea underlying word2vec - lecture 1)

/1



Count-based methods

» Represent the “company” of a word in terms of a word co-
occurrence-matrix, get the statistics (counts)

» E.g. Latent Semantic Analysis (LSA) (Deerwester et al., 1990)
SVD decomposition over co-occurence matrix to reduce to
lower-dimensional space (matrix U where dim < |docs|)

documents dimensions dimensions documents
i 2 s .
L c = [
‘E‘ >
transformed s word = | weights = document space
s > - -
= word-document 5 space
5 2

CO-OCCUITCICC
matnx

GRIFFITHS, STEYVERS, AND TENENBAUM

https://simonpaarlberg.com/posts/2012-06-28-latent-semantic-analyses/box2.png

/2



Prediction-based methods

» Key idea: predict the context of a word (instead of
capturing co-occurrence statistics in matrix C) to directly
learn the low-dimensional word vector representation

» Word2vec (family of methods) Mikolov et al. (2013)
[Lecture 1 by Ryan] - scales well to large data

P(Wt_z | Wt) P(Wt+2 I Wt)

P(wWe_q | we) P(Wiyq | we)
N

banking crises as

\ 0 J
Y Y \ Y )

outside context words center word outside context words
in window of size 2 at position t in window of size 2

problems turning

lllustration by Chris Manning

/3



Example: Cross-lingual POS tagging-

Word embedding initialization
(Plank & Agic, 2018)

@)
O 75 -
S , |
O Is — with polyglot
(U .
701 1 aeas without
0 10 20

# training sentences (x103)

Mean over 21 languages
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Window-based neural LM via FFNN

fixed window of »n words

/6


http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf

A fixed-window based neural LM

books
l laptops

output distribution H_lﬂll_r"
g = softmax(Uh + by) € RV n

p N 200

U
hidden |
hlﬁ%aip+b) (e00000000000)
concofenation W

N S e

i _—

concatenated word embeddings
o [6(1); el?): gl 8(4)]

?

S e e = = —
— &"“_

E

wqrds/ pne-hot vectors the students  opened their
2D 22 23 ) 1 L@ (3) (1)

Ad apted fro m Ab | g ai | See http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf

o —— \:;
o000 cooe oco0oo ocooo) )
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http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf
http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf

Training the Neural n-gram LM

» Iteratively move the n-gram window through a very large
corpus to predict the next word at each time step

» Cross-entropy loss (negative log-likelihood):
L=—logp(w,|w,_;..W,_11)

» Note: typically very large vocabulary (softmax)

» Workaround: negative sampling (lecture 1)

/8



What about these issues?

v

» for programming she yesterday purchased her own brand new laptop

» Can it handle similar words?

» she bought a bicycle

» she purchased a bicycle

» Long-distance dependencies?

» for running she yesterday purchased her brand new sportswatch

/79



Tips for unknown words

» Simplest solution:

» Train an <UNK> word vector, e.g., map rare words to
UNK (count < threshold)

» Problem:
» Conflates a long tail into the same vector representation

» Subword representations (character-level models) to the
rescue!

» More on these later (after we have seen CNNs)
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CNNs / Convnets



Convolutional Neural Network (CNN)

» Neural networks for processing data with a grid-like
typology (LeCun & Bengio, 1995)

» Can handle arbitrary-length inputs and reduce them down
to a fixed size vector representation

» Core idea: Parameter Sharing over Space  fixed-size representation

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected J Connected

<. dog (0.01)
cat (0.04)
boat (0.94) 4

eedforword NN

neurons in a feature map
share the same W

[1] http://www.deeplearningbook.org/contents/convnets.html
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What are CNNs - Terminology

» CNNs use convolutions over the input (convolution +
pooling)

» Each convolution applies filters (or kernels; often several
hundreds of them) and combines their results via
pooling (to reduce the resolution of the feature map and
the sensitivity of the output to shifts and distortion)

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

== ~——o. dog(0.01)
cat (0.04)
boat (0.94)
bird (0.02)
’I

a convolutional layer has typically
several feature maps (with different W)
to extract different features
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Translational equivalence

Slide by Jes Frellsen

- ¢ 7r0
i e translation
b TR > ot
f o (f)
\ \
convolution convolution
Y Y
Uy
* translation
T
w(f) W (mo(f))
=T (‘I’(f))
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Example of a 2D convolution

» Filter (kernel) of size 3x3

» “to identify indicative local predictors" (Goldberg, 2015)

1x1 1x0 1x1 0 0
O L)11(0) |4
0,001, 1|1
O(0(1(1]|0
O(1(1(0]|0
mage Convolved
Feature

Source: http://deeplearning.stanford.edu/wiki/index.php/Feature extraction using convolution
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http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

Convolution - Filter (Kernel) example

Whart is this Kernel do/nj?

computing a moving average

» Imagine a 1d input vector

» f: [10, 50, 60, 10, 20, 40, 30]

y g [1/3, 1/3, 1/3] (f*)@) = ) g(j) - fli —j+mI2)
j=1

» Let’s compute the value at position h(3)

50*§+60*§+ 10*% — 40
h(3) = 40

|
h(4) = 30 .



Convolutions for Text

Collobert et al. (2011); Kim (2014)



Types of convolution

She likes strong coffee narrow/“valid” convolution
| I / /

She likes
likes strong

strong coffee

<s> She likes strong coffee </s>

| | l | wide/“same” convolution
| I ]
| (padded)




CNN on Text

k=2 window length n=4 input length

din=3 embedding dim She likes strong coffee

dw i=kdin=6 filter width I I | |

dout=4 conv output dim

She likes — [DOOI000 —>4—> OOOO Pi
likes strong — [DOOIOOO —»,—» OOOO
strong coffee — [OOOI0C00 *—2—’ OOOO

i= WiW+b de i x d out V V V V F’C}Oie.d
P9 ) . OOQQ)| feature map
“F’E’bj same “filker”

o each window ci=maXjiem(Pi[J])




“soft” n-grams



Single depth slice

i 2 | 4
Samen /7 | 8
3 | 2 N
1 | 2 S

Stride

max pool with 2x2 filters
and stride 2

>




Types of pooling (1/3)

» Max pooling: “Did you see this feature anywhere in the
range?” (most common) ci=maxien(Pi[Jj])

» Average pooling: “How prevalent is this feature over the

entire range” ci=1/m5n pi
21( 8 | 812
12(19] 9| 7
8 (10|43
/ 18[12[ 9 [10
15/ 9 a2
12| 7 1810

Average Pooling Max Pooling



Types of pooling (2/3)

» k-Max pooling: “Did you see this feature up to k
times?” (Kalchbrenner et al., 2014)

» retain top k values in each dimension instead of only
the best one, while preserving the order in which they
appeare

WaN O R
B0 WO N
PR ROW

1-max poolirig/ \Z-max pooling
9 6 3
285 785

XK

94



Types of pooling (3/3)

» Dynamic pooling: “Are some parts more
informative?” (Johnson & Zhang, 2015)

» split pi's into separate groups based on domain
knowledge and apply max-pooling to each region/group

» e.g. initial sentences more predictive for news topic
classification (Johnson & Zhang, 2015)

WaN O
B0 WO N
PR ROW
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CNNs for Text Classification (Kim, 2014)

different “channels” for pre-trained & embeddings from scratch

/

wailt
for e i
the o - | ..
\ \ \ O\
and | - o N\ M\
e \ \
d’o " g | \\—\\
nt ( | | | | | H 0000 e i W
rent | | | | | | H 7
it
| | | I | I | |
n x k representation of Convolutional layer with Max-over-lime Fully connected layer
sentence with static and multiple filter widths and pooling with dropout and
non-static channels feature maps softmax output

Figure 1: Model architecture with two channels for an example sentence.



CNNs - Interim summary

» Main idea: apply the same parametrized function over all
n-grams in the sequence.

» This creates a series of m vectors, each representing a
particular n-gram in the sequence

» The representation is sensitive to the identity and order of
the words in the n-gram, but the same representation will
be extracted for a n-gram regardless of its position in the
sequence
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Two advances In
CNNs



Stacked convolutions

» Hierarchical convolutions: apply a sequence of r
convolutions that feed into each other

» Resulting vectors capture increasingly larger windows
(“receptive fields”)

1 _ kl .
= CONYV Wi
p1:m1 N Ul,bl( 1 ) was not very not very good

pimz = CONVk2U2,b2(p1 . my) / \ / \

was not not very very good

/N /N /N

P]{;mr = CONV*r urp(Pr—1  My_y) was not very good

99



Dilated convolutions

(Strubell et al., 2017; Kalchbrenner et al,. 2016; Yu and Koltun, 2016)

» Each layer in the hierarchy has a stride size of k-1

» speed gains over RNNs

Figure 1: A dilated CNN block with maximum
dilation width 4 and filter width 3. Neurons con-
tributing to a single highlighted neuron in the last
layer are also highlighted.


https://www.aclweb.org/anthology/D17-1283
https://arxiv.org/pdf/1610.10099.pdf
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Recurrent Neural Networks (RNNs)

Elman, 1990

» RNNs (and their variants) are one of the most powerful
and widespread architectures to date

» From ].Schmidhuber’s homepage:

speech recognition. They
learn through gradient
-y ’ descent and / or evolution
' 4 or both. Compare the RNN
‘ Book Preface. LSTM is
getting popular: Google,
- Apple, Microsoft,
Facebook, |IBM, Baidu,
and many other companies use LSTM RNNSs
to improve large vocabulary speech
recognition, machine translation, language
identification / time series prediction / text-to-
speech synthesis, etc.

Z
P
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http://people.idsia.ch/~juergen/

Recurrent Neural Networks (RNNs)

» Can handle arbitrary length inputs (just like CNNs or a
FFNN with a CBOW input representation)

» Unlike CBOW, they model the order in the sequence

» Unlike vanilla CNNs, they can deal with long-distance
dependencies (especially the gated RNN variants)

» Do not need to make the Markov assumption

» Opens up for a family of models:
Conditioned generation models
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Ke; [deo.

Recurrent Neural Networks (RNNs)

! RNNs have an internal
‘ “memory” (state)
“vanilla” Neural Network : which is updated as the }

L. Sequenceisread |}
§=Wh+b .

. .O h = g(Vx;+ Uh,_{ +¢)
I recurrence |

. menmory [ statfe

h = g(Vx +b)
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Recurrent Neural Networks

A family of recurrent NN architectures

_— Core ideo
utput (sequence) { Y1 Y2 Y3 Ya Parameter
T T T T SAoring over
Hidden states O|—|O|—|O—(O (oa/ppl U
= /
CT)‘ % %‘ %‘ repe&f-edly)

Input sequence { X1 Xo X3 X4
(any length)

| love New York
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Before we dig into detalls
- The RNN abstraction



Count the number of 1s

1evi e WIOH0L0101 114011071111
1010101010101000101010110 010

O1010101010101010100@1010
1Ol010101010001010101101010

Example from Cho (2015)



Count the number of 1s

def addl(el,s):
i1f el==1: return s+1
else: return s

v=[(0,1,0,0,1,1]

Two important
components:
® memory s s=(

e function add1 is £ 1 3 .
applied to each or e in v

symbol in the s=add1(el,s)
iInput one at a time to : " .
update the memory prlnt ( count ( 1 ) .



The RNN abstraction

» Input sequence of vectors: Xq.

» Start state: Sg

» RN N (89, X1.n) consists of two functions:

» function R consumes input and previous state A

» function () maps states to outputs

Yi

e e T

Si—1—>|R,O

* I
R
*
*
o
’0

Xj

*
R
*
*
*
*
*
*
K3

— Sj

(Graphical illustration - recursive - from Yoav Goldberg’s primer, 2015)
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https://arxiv.org/abs/1510.00726

The RNN abstraction - More formally

RNN(SO, X1:n) —S1:n, Y1:n

si = R(sj_1,Xj)

*
R
4
*
*
*
*
*
K3

(Graphical illustration - recursive - from Yoav Goldberg’s primer, 2015)
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https://arxiv.org/abs/1510.00726

RNN: Unrolled over time

Y1 Y2 Y3 Y4 Y5
:"" -"351 :"" -"‘:52 :""""‘:53 :"" -"‘:54 R
So ' R,O :—>: R,O :—»: R,O :—': R,O :—" R,O —> S5
X1 X2 X3 X4 X5
0

Figure 6: Graphical representation of an RNN (unrolled).

(Graphical illustration - recursive - from Yoav Goldberg’s primer, 2015)
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Expansion at time step 4

S4 ZR(S3, X4)
S3
ZR(R(Sz, X3), X4)
S2
ZR(R(R(Sl, Xz), X3), X4)
S1
=R(R(R(R(So, Xl), Xz), X3), X4)

(Graphical illustration - recursive - from Yoav Goldberg’s primer, 2015)
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Training a RNN, parameter tying

y. = Wh,+b
h = g(Vx, + Uh,_,)

- Parameter tying: the |
| parameters are shared |
. across time steps! ¢

. ES . ES . ES . ES
tttttttt
---------

---------------------------------------

i the unrolled graph !
is a DAG :
computational
graph, we can
backprop back

! Pros: - reduce #params ¢
¢ - model arbitrary lengths {

|—>
—
—
—

Backpropagation
through time (BPTT, Werbos, 1990).

=000

'

@e

'

Q0

|
Z—(000)

L
N

pd
N

e
)

U Inspired by Chris Dyer’s lecture 115



A closer look: inside an RNN

» We process a sequence x by
applying a recurrence formula at
every time step I:

new state

™~ h; |= fH(hi—hE)

/ A
function \

parametrized by 6

previous state input

?@
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Vanilla RNN

» Simple vanilla RNN (Elman, 1990)

RNN: example instantiation
of function

parametrized by 0

y¢ = Wh,+ b
h = g(Vx, + Uh,_,)
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Summary of Views:

(a) A single RNN time step (b) An unrolled RNN

W, | b,
Yy :
ht_l ~—> X —» + i tanh —-—b h,_ hc» - tanh =
' _*_ :
th > X
x|
(c) A simplified view
h, -~ RNN —{ RNN
; i
x| x? _‘%
lllustrations by G.Neubig, 2018 h

ttp://www.phontron.com/class/mtandseq2seq2018/assets/slides/mt-fall2018.chapter6.pdf
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http://www.phontron.com/class/mtandseq2seq2018/assets/slides/mt-fall2018.chapter6.pdf

RNN Language Model



Training a RNN M

¥, = softmax(Wh, +b) € R
¢ = 8(Vx,+ Uh,_{ +¢)

sum over all costs

Erue word yl
(one-hot) i

........ e et T Lep@.y) = = D, ¥ilog(F)

Predicﬁed erob > ¥ ; ¥, V3 V4

distributions T T T T Leg, (§.y) = —log(¥y)
h,(@] h @] h{Q] hf/O
Of—(O—|0—|O
o/ @ @ & lo
O 1
Q the cats of Athens
h,,

See Yoav Goldberg’s book Sec.2.7.1
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What about these issues?

» Can it handle similar words?

» she bought a bicycle

» she purchased a bicycle

» Long-distance dependencies?
» for programming she yesterday purchased her own brand new laptop

» for running she yesterday purchased her brand new sportswatch

However, in practice the vanilla RNN
has some trouble.. more soon
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Generate with a RNN LM - some fun!

Generating Baby Names character-level RNN-LM

Lets try one more for fun. Lets feed the RNN a large text file that contains 8000 baby names listed out, one per
line (names obtained from here). We can feed this to the RNN and then generate new names! Here are some
example names, only showing the ones that do not occur in the training data (90% don't):

Rudi Levette Berice Lussa Hany Mareanne Chrestina Carissy Marylen Hammine Janye Marlise Jacacrie
Hendred Romand Charienna Nenotto Ette Dorane Wallen Marly Darine Salina Elvyn Ersia Maralena Minoria Ellia
Charmin Antley Nerille Chelon Walmor Evena Jeryly Stachon Charisa Allisa Anatha Cathanie Geetra Alexie Jerin
Cassen Herbett Cossie Velen Daurenge Robester Shermond Terisa Licia Roselen Ferine Jayn Lusine Charyanne
Sales Sanny Resa Wallon Martine Merus Jelen Candica Wallin Tel Rachene Tarine Ozila Ketia Shanne Arnande
Karella Roselina Alessia Chasty Deland Berther Geamar Jackein Mellisand Sagdy Nenc Lessie Rasemy Guen
Gavi Milea Anneda Margoris Janin Rodelin Zeanna Elyne Janah Ferzina Susta Pey Castina

You can see many more here. Some of my favorites include "Baby” (haha), "Killie”, "Char”, “"R”, “More”, "Mars”,
“Hi”, “Saddie”, "With" and “Ahbort”. Well that was fun. Of course, you can imagine this being quite useful
inspiration when writing a novel, or naming a new startup ;)

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Generate with a RNN LM - some fun!

Algebraic Geometry (Latex)

The results above suggest tha: the model is actually quite gocd at learning complax syniactic structures.
Impressed by thesza results, my labmate (Justin Johnson) and | decided to push even further into structured
territories and got a hold of this book on algsbraic stacks/geomatry. We downloaded tre raw _atex source file (a
16MB fle) and trained a multilayer LSTM. Amazingly, the resulting sampled Latex armost compiles. We nad to
step in and fix & few issues manually but then you get plausidle looking math, it's quite astonishing

Fou Q".L e Vhue £y = 0, hawe ve can find a closeld sulset # in % and
any sets F on X, U is a closed immersion of S, then U — T is a separatal algebric
space,

Pronf. Proof of (1) It alko start we got

S=Spec(f)=U xxUxyl
and the comparicoly in the fbre product covering we have te prove the lemma
generated by J1Z xo U < V. Coasider the maps M along the set of points
Schyypy and U — U is the fibre eategory of S'in U in Section. 77 and the fact that
any U7 affine, see Morphisms, Lomma 77, Hence we obtain a scheme S and any
cpon subsot W € U in SA(C) sush that Spec(R') < § s smooth or sn

U= | JUixs, Ui

which has a nonzero morphisin we may assume that f, is of finite presentation over
5. We clabin that Oy, Is ascheme where o, &', 8" € 5 such that Ox o — f)f\. g 8
separated. By Algebra, Lemma 77 we can define a map of complexes GLg (2 /5")

and we win a

To prove study we see that Fl = o covering of X7 and 7} is an object of Fy, . for
i >0 and J, oxists and lot F, be a presheaf of Og-modules on € as a F-medule.
In particalar F = U/F wo have to show that

MN° = I° 8gpeit) Osa = ix' F)

i a uniqae morphizm of algebraic stacks, Note that
Armows = (J’rh/.'f');'_;l. (SCA/S) pops

and

V = I(S.0) —s (U, Spec(A))
v s open subset of X, Thus U s aflive. This b & coatinuows map of X is e
inverse, the grouposd scleise S.
Proaf. See disenssion of sheaves of sots O
The result for prove any open covering follows from the less of Example 77, 1t may
replace S by Xyyaces.tate Which gives an open subspace of X and T equal to Sz,

so¢ Desoont, Lemma 77, Namdy, br Lemsma 77 we see that R is geometrically
regular over S.

Lemma 0.1, Assumne (3) and (3) by the construction m the descriplion.
Suppose X = [im|.X| (by the forma! open covering X and a singls nap ﬂ" (A =
Spec(B) over U compatible with the compler

Sen(A) =I(X,0x0,)-

When in this case of to show that Q — Czyyx s stable under the following resull
in the sevond conddions of (1), and (2). This finishes the proaf By Definition 77
(withesnt elemeont is when the clased subschemes are catenary. If T is surjective we
may csswme tha! T i connected with vesidue fislde of S Moareover there exviste o
closed subspace Z € X of X whers U in X' is proper (scme dofinirg as a olosed
subset of the snigumess it suffices to check the Jact thal the following theoremn

(1) J is locally of finite tape. Since 5§ = Spec( i) and Y = Spexc(iX).

Froof. 'This 18 tarmn all sheaves ol sheaves on X, But given a scheme U and a
surjoctive éale worphise U = X, Let UNU s || o, U; be the scheme X over
S at the schemes X; = X and U = lim; X, O

The fclowing lemma surjective restrccomposes of this implies that F, = 5, -
TXyte

Lemma 0.2. Let X be a locally Noctherien scheme over S, E= Fyys. Se! I =
H T . SneeT" = IT" ars nonzero over ig S p 15 a subset of T, 50 Ay works.

Lemma 0.3. In Situstion 77. Hence we map assume q' = ().

Provof. We will use the propecty woe e that p = the mext functer (2?7). On the
other hoand, by Lerema 77 we sce that

HOx) = Ox(D)
where K is an Faalzobra where 4 | is 8 sehome over S n

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Sampled (fake) algenraic geomaty Here's the actual pdf
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RNNSs - Interim summary

» LM: a model that predicts the next word
» RNN: a family of neural networks
» to model sequential input of any length
» apply the same parameters on each time step
» can optionally produce output at each time step

» RNN’s are great as LMs. But they can be used for much
more!
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Common Usage
Patterns



Example: An RNN as acceptor

» Use last state to predict y
» sentence encoding

» Calculate loss and backprob
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Example: An RNN as acceptor

» Use average of states to predict y

» other sentence encoding .
take element-wise max
or mean of hidden states
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Example: An RNN as encoder

» Use last state as encoding of the information in the
sequence; use as “feature” in other NN

» encode, not predict

» E.g. character RNN

|
1
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............................
LE]
"
L]
.

-
.
]
.....

» predict an output
for each
time step t

» E.g. Tagging
(POS, NER)

lllustration adapted from Karpathy 129

many to many



Combining them - a hierarchical RNN:
Example for POS

» Use RNN transducer and lower-level RNN encoder for
characters (more in a second)

RNN transducer

character-level
encoder

ADJ

o
=
n
_l
<
o
—
n
_I
<

«—

the

|

t h e

(Plank et al., 2016)



RNN as generator

one to many
» Conditional

generation . . .
» E.g. Image
caption generation, I I I

speech synthesis

!
)

lllustration adapted from Karpathy 131



RNN encoder-decoder (seq2seq)

many to many

» Both input and output
are a sequence . . .

!
)

lllustration adapted from Karpathy 132



Deeper, better
models?



Only left to right?

The person who hunts ducks out on the weekends

... person who hunts ducks out ..

©09
}
©09
|
©09
'
©09
}
©09

Example adapted from Rao & McMahan, 2018 https://en.wikipedia.org/wiki/Garden-path_sentence
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Bidirectional RNNs

... person who hunts ducks out ..

hi
@ @ @ @ @
o @ /g o @
@ @@ @ @
. O] — |Ol—+ O] «— |O] — |O]| -
o @ g) o @
\b¥
®
h; = [h{;h?] (O
&)
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Stacked RNNs

» Multiple layers of RNNs, e.g., bi-RNNs

OOO

letter
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Guards against the long
tail?
Subword representations



OOVs (out-of-vocabulary) words

» So far we saw <UNK>

» But that conflates a lot of information into a single
<UNK> representations

» Are we better of modeling at the subword level?
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Subword representations: Characters

PROPN VERB NOUN

OOO OOO OOO

/ / /\

A
R
. &
- &
. N &
U o -
. N -
. 4 - q
h
. . .
- L4 L]

IQXQIQXQI KX)IQXQI OOOO
Juli loves cats V\

)

s <WS E
C . *able (98% ad]
a i in WSJ)
t E
S / . bi* (85% noun

(Plank et al., 2016 for POS; <jw> E in Danish)

Ling etal., 2015 for NER) i W~ 5



How to model subwords?

» Representations:
» Characters
» Bytes (e.g., Gillick et al., 2015; Plank et al., 2016)
» Byte-Pair Encoding (BPE) (Sennerich et al., 2016)
» Modeling choices:
» RNN-variants, CNNEs, ...

» How to leverage the representations (only char level,
combine, ...)
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A note on terminology

» RNN = “vanilla” RNN R

VP

» RNN flavors (=gated RNNs):

» GRU e and LSTMs g

» Why? Problem of RNNs: Vanishing gradients!
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Gated RNN
architectures



Vanishing Gradient

» Example:
» The cat, which ate a ...., was full
» The cats, which ..., were full

» Backprop can have difficulties with long sequences:
vanishing gradient problem

» if the gradient becomes very close to zero:
» is it because there is no dependency in the data?

» or because of a wrong configuration of the
parameters—the vanishing gradient condition?
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Exploding Gradients

» Easier to catch. If the gradient becomes to big, then the
SGD update becomes very large:

learning rate
pnew — 901(1 . OcVQ](@)

gradient

» This might cause bad updates: too large updates, large loss

» In the worst case, you might get NaNs or Infs

» Solution: gradient clipping (scale down before update)
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Vanishing Gradient

J)(0)
A
R h(2) h(3) h(4)
O @ O ®
O W ___|® w___|® W ®
O O O O
o o 0 0
o.J% Oh(2) oh(3) oh@®|  oJ@
: = | a7 X X —[% .
Oh(1) Oh(1) Oh(2) Oh®)| onM

What happens if these are small?

Slide by Abigail See

Vanishing gradient problem:

When these are small, the
gradient signal gets smaller
and smaller as it
backpropagates further

46



Why is Vanishing Gradient a problem?

J2) () J4)(9)
A A
h(1) h(?_L h(3) h,(4)
O
5 W ° W __|e W o °
O O O O
& e ° °

Gradient signal from faraway is lost because it’s much
smaller than gradient signal from close-by.

So model weights are only updated only with respect to
near effects, not long-term effects.

Slide by Abigail See 147



Effect of vanishing gradient

| M task:

“When she bought her laptop, she found that the keyboard
layout was Danish. She went back to the shop to ask if the
owner of the shop had another keyboard layout.

Unfortunately this was not the case, so she keptthe _____

!

Model needs to learn a dependency to “laptop”
But if the gradients are small, the model won't learn this

RNNs are better at syntactic recency [Linzen et al., 2016]
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ht—l

A

Yt

T

softmax

RNN

unit

At each time step, the
hidden state is updated:

h; = fo(h;,_1,x;)

h = ranh(Vx; + Uh,_; + b)

* inavanilla RNN
! the hidden state is

constantly being
rewritten
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Gated RNN architectures:
RNN flavors with a
separate memory



GRU (Gated recurrent Unit) - simplified

» Cho et al. (2014) - key idea: dynamic memory update ¢ (h=c)

» at every step t, consider overwriting candidate memory c

Ci—1

; candidate for overwriting cell
f :

¢ = tanh(U x,+ W.c,_; + b,)

softmax

3 A
>

. t . 0 o T sigmoid gate: values

cT T)/U update” qgate between 0 and 1
kl tanh o)

A J “choose which bits to update”
\.

¢ =[yyO©C+ (1 -y O¢y
x, update ¥ goanmma U > © T T

element-wise mu&iptica&iam .



GRU (Gated recurrent Unit) - full

» GRU: creates “adaptive” connections

» perhaps prune some unnecessary connections adaptively

Update gate: controls what

updated vs preserved

parts of the hidden state are \

¢ = tanh(U X,

Wefre Ole.)

Reset gate: controls what parts
of the previous hidden state are
used to compute new content

/v}’R =‘0 (Urx¢ + Wgree_ g + ij

¢, =ywoOc+ -y ©c 4

How does this help the vanishing gradient problem?

GRUs make it easier to retain info long-term (e.g. by not updating bits)

Slide inspired by Abigail See

"Learning Phrase Representations using RNN Encoder—Decoder for Statistical Machine Translation", Cho et al. 2014, https://arxiv.org/pdf/1406.1078v3 .pdf

b.)
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LSTM (Long-Short Term Memory)

» Introduced by Hochreiter & Schmidhuber 1997
» Separate memory cell c and hidden state h
» Three gates:

» forget gate: controls what is kept and forgotten from previous
cell state

» input gate: controls what part of the new cell content are
written to the cell

» output gate: controls what part of the new cell content are
written to the hidden state
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LSTM (Long-Short Term Memory)

We have a sequence of inputs z'*), and we will compute a sequence of hidden states h®
and cell states ¢*. On timestep t:

Sigmoid function: all gate
Forget gate: controls what is kept vs values are between 0 and 1

forgotten, from previous cell state \

&® — tanh (Wch,(H) +U.z® + bc)

content from last cell state, and write \
c® = £ o t=1) 4 () o &(0)

(“input”) some new cell content

/ ™

(1) — (t—1) (t)
Input gate: controls what parts of the f Y th + Ufm + bf -
new cell content are written to cell \ : .1 . £
z()—a(Wih(‘)+in()+bi) 5
@
Output gate: controls what parts of Py
cell are output to hidden state ~ o) =|g (Woh(t_l) + Uow(t) + bo) 5
©
New cell content: this is the new P g
content to be written to the cell \ S
S
QD
Cell state: erase (“forget”) some S
@
O
=
<

Hidden state: read (“output”) some | |, R — o) o tanh () I
content from the cell \

Gates are applied using
Slide by Abigail See element-wise product 154




LSTM (Long-Short Term Memory)

Write some new cell content

Forget some
cell content

Compute the

N

b

forget gate

Compute the
input gate

\ o
Cp.1 =P X ®
i o Ganh>
fo [~ X X
' 0||0o|[tanh]| | O |
ht-1-1>

)

\

new cell content

Compute the

Neural Network Pointwise
Layer Operation

Vector
Transfer

Concatenate

Copy

Slide by Abigail See

——— | Output some cell content

to the hidden state

Compute the
output gate
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GRU vs LSTM

» GRU is more efficient to learn (fewer parameters)
» Which is better?

» No conclusive evidence that one is always superior to
the other

» LSTM is typically a good starting choice

» Suggestion: switch to GRU if you want a more efficient
model
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Residual connections

» Is the vanishing gradient problem specific to RNNs?
» No! Also for deep FFNN and ConvNets

» Solution: add direct “skip” connections (ResNet, residual
connections) - proposed by He et al., (2015)

» i.e. add F(x) + x, instead of F(x)

» allows for training deeper models

A 4

weight layer
F(x) l relu x
weight layer identity

Figure 2. Residual learning: a building block. 157


https://arxiv.org/pdf/1512.03385.pdf

LSTMs are everywhere...



Let’s look briefly at different
decoders via examples



A very common POS tagger

» Use bi-LSTM transducer with a lower-level bi-LSTM
encoder for characters and a softmax decoder

MLP decoder

BiLSTM BiLSTM
RNN transducer %__».*—
character-level i
encoder

t h e r ‘e ' d cllall]ct

ADJ

the




POS tagging on many languages

B TnT (HMM) bi-LSTM words bi-LSTM chars M words+characters

Accuracy
O
Ol
-

90.0

English  Indoeuropean Non-Indo. Germanic Romance Slavic

17 coarse POS tags,
experiments over 22 languages of UD 1.2, (Plank et al., 2016)



absolute improvement

-0.025

A closer look at non-IE languages

0.125 == Fusional (Czech, English)

== Agglutinative (Finnish)
Root&Pattern (Arabic, Hebrew)

== Reduplication (Indonesian)

typology by

0.075 (Vania & Lopez, 2017)

0 L 2 3 4

log word frequency
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Named Entity Recognition (NER)
) Example: lives in

» (Huang et al., 2015): from RNN to bidirectional LSTM-CRF

MLP decoder CRF decoder

B-ORG O RB-MISC 0
B-ORG O B-MISC 0
T T 4 B
» ; \\ // \\ / \\ // \\ !R%\ A\ /ﬂ';.\ /'ﬁ;-\
fOl’W &ld Zé \ \ / \ 4 \ fonVﬂf d 4 \\ ," \‘ / \\ ! \\
§ R %}Q@‘ 3 E?}\,%‘
\ : \ =~ \ t} = \ § = < k. R - g —— k. b:} S
. \ \ = \ o~ N
backward \\ 7 \ } \ / \\ / backward \\ A \ 73 \ ;J \\ #
‘ ﬁ AL' —\Ll 174 V4 AV4 AV
EU rejects German call EU rejects German call
Figure 4: A bidirectional LSTM network. Figure 7: A BI-LSTM-CRF model.
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CRF decoder

» Stronger sequential nature (e.g., I-PER after B-PER)

Bill B-pER lives in| e e

Lample et al., (2016):

CRF maintains matrix A: transition scores
matrix (k x k tags plus start/end)-
Aj score from tagitoj

Yy = (yl s Y2y 00y y-n) —— ‘ " * "
B-ORG 0 B-MISC T S(X’ y) - Z A‘yi=yi+1 + Z P‘"ryi
— | aidl i=0 i=1 T
L | — y
A A M
. S /" ‘\ // \\ i i
forward \ D P: output of bi-LSTM projected onto
—k K & §3< X %,\“ < hidden layer (of size n x k) -
backward /” \/ A\ Pi;: score of jth tag for i-th word
- "
EU rejects German P is input to the CRF layer
X — (xl)}(?’ )x'n)a
(v[X) es(Xy) Softmax over all possible tag sequences Y,
Py =

dynamic programming 164



Meta-BILSTM

» The model so far is restricted to subwords to within words

» Recent SOTA model (‘classifier )
t
» context-sensitive MLP

character and

. (classiﬁer] g< ’EL 1€
word representations— " T S _—
. MLP MLP
» Models trained ¥ 1+ 3 r 4 1 3

(>0 00— >0

SynChronOUSIY& L] el ]l [Je—l—l—]¢—]

then combined PAMMM MYt 4t 8
Char Embeddinﬁs Wc;rd En}beddings
MLP hars of a Sentence Words of a Sentfence
’B1st Blast .
OO0«
>0
F F

1st last

..had _ shingles =, which _ is.. (Bohnetetal. 2018)


http://nlpprogress.com/english/part-of-speech_tagging.html

Google’s Neural MT System
(Wu et al., 2016)

- * » deep bidirectional
L | O i STM (stacked) with
Cow DT —~CD | - @ . o : ( ) :
| R | residual connections
Szlaycrs ;\ ;\ ;. S {\:’\// R and attention
GPU3 \' 0 _.(‘ “ ; \:\}i:\\\ '. i /'I\
g S ?"\\ .. GPU3 .
% | p— AN U2 = » huge improvements
T B NGB e i MT quality
o -~ T G G S s

https://arxiv.org/pdf/1609.08144 pdf

» Now (2019 onwards): other approaches have become dominant for
certain NLP tasks (e.g. the Transformer) - see more on Monday (Arianna)
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https://arxiv.org/pdf/1609.08144.pdf
https://arxiv.org/pdf/1609.08144.pdf

Interim summary

» RNNs:

» Two fancy variants: LSTM and GRU e
to address the vanishing gradient problem

» Deep RNNs (stacking)
» Residual connections
» Two more concepts to cover:
» beyond static word embeddings

» gluing it all together: attention!
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Traditional (“static”)
word embeddings

compress all contexts into a single vector



Contextualized
word embeddings



Representing a word as vector so far

» Problem:

» It is a type-based representation: always the same vector
for a word regardless of its context (e.g. ‘ducks’)

» Polysemy is not handled

She sees ducks She ducks

» Solution: Contextualized embeddings

» Learn a vector that depends on the context
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ELMo:
Embeddings as Language Models

Neural LMs embed the left and right context of a word

We can use a bi-directional LM with the forward and the
backward LSTM states

N
_>
Z (logp(tk | t1,...,tk-1:Oz, © LsTM, O5)
k=1

(—
+logp(ti | tkety.. ., tN; Oz, O LsTM, O5) ).

Key Idea: Learn word token vectors (not type!) using long
contexts (not only context windows)

ELMO uses a “deep” model to get different encodings (or
“views”) from stacked RNNs
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Embeddings from Language Models
ELMo = (M @000))+ (1220000 )+(As[@009))

< BiLSTM  pra—— BiLSTM ‘ BiLSTM

BILSTM 4 BILSTM

000 000 000 Q000 000

BiLSTM e BiLSTM

0000/ (0000

person who ducks out on
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ELMo - Detalils

» ELMo: every token is assigned a representation that is a
function of the entire input sentence (L=#stacked layers)

_>
Ry = {xfM WP WM |j=1,...,1)

= {hgi' [j=0,...,L},
» This gives 2L+1 representations - Which to use?
» Just the top layer (similar to TagLM; Peters et al., 2017)
» Include all L+1 layers, average

» All layers, weighted average (best)

ELMotask (R @task task Z task hL M
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How to use ELMo for your task?

» Recipe: For a given instance
» Run biLM to get the representations for each word

» Concatenate ELMo embeddings into task-specific
model, e.g.,

» as additional input to static word embeddings
» as additional hidden representation

» ... many choices, best might depend on end task

176



Results over 6 NLP benchmarks q

Peters et al., NAACL 2018

100

73

50

25

SQUAD SNLI SRL Coref NER SST-5
F accuracy F avg F1 F accuracy



Is ELMo the first such model? No!

» ELMo is deeper compared to an earlier model
by Peters et al., 2017 ACL (TagLM)

» It doesn’t require parallel data (as CoVe does) by
McCann et al., 2017 NeurlPS

» CoVe: use NMT as encoder (translation is meant to
preserve meaning, so why not use it to provide context?)

» It obtained a new SOTA on 6 benchmarks
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What's In a
representation?



Probing ELMo representations

» What do ELMo

representations capture? [ first layer
100

B second layer

» Word Sense
Disambiguation (WSD)

75

» Part-of-Speech tagging
(POS) 50

» Finding: Different layers
encode different kinds of
syntactic and semantic
information

25

0

WSD POS
(Selected related work): Tenney et al., 2019 ACL; Liu et al., 2019 NAACL

Belinkov & Glass, 2019 TAC
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https://arxiv.org/abs/1905.05950
https://www.aclweb.org/anthology/N19-1112
https://transacl.org/ojs/index.php/tacl/article/view/1570

On what was ELMo trained?

» A news corpus of 1B words: the 1-billion word language
modeling benchmark (Chelba et al., 2014)

» ELMo can compute representations for any task

» In some cases, fine-tuning ELMo on domain-specific data
leads to increased downstream performance

Fine-tuning: train on large data, continue training on small data (reuse weights)
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Fine-tuning: One way of
Transfer Learning

A A Transfer Learning s

e
A - -
Knowledge gained
to help solve T
l a related problem
Model A Model B

e— W
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Language models learn
transferable contextual
representations



To sum up: ELMo properties

unsupervised
contextual
deep
character-based

extremely versatile (new type of word representation)

Many follow-up words, most of which rely on the
transformer model (Lecture 4), e.g., BERT
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NLP Progress on NER

» From Ruder et al.’s 2019 NAACL tutorial

CNN Large + fine-tune: 93.5
Flair embeddings: 93.09

93 BERT Large: 92.8
BiLSTM-CRF “ Cross-view
+ELMo0: 92.22 D+ Multi-Task:92.61

92 TagLM:91.93 BERT Base: 92.4

Yang et al.:91.26
LIn anc Wu. 2009 &E’T:AnccjrziﬁvcyRF- 91.21 ’
Phrase & word clusters: 90.90 — ® LM-LSTM-CRF: 91.24

91 -

F1 o LSTM-CRF: 90.94
.
Chiu and Nichols 2015: 90.69
90 -

Collobert et al. 2011: 89.59 Passos et al. 2014: 90.05

Ando and Zhang. 2005 ¢
co- and self-supervision: 89.31

b

89 ./
Florian et al., 2003: 88.76
88 7 F f 7 F | 7 F } } } | } } } f } } } } } } } } |
Jun 03 Jun 05 Jun 09 Jun 11 Jun 12 Jun 13 Jun 14 Jun 15 Jun 16 Jun17 Jun 18 Jun 19

Performance on Named Entity Recognition (NER) on CoNLL-2003 (English) over time
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Attention? Attention!

Many thanks to Lilian Weng for an awesome tutorial (https://lilianweng.qgithub.io/lil-log/
2018/06/24/attention-attention.html) and Graham Neubig’s NN for NLP class (http://
www.phontron.com/class/nn4nip2019/)



https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
http://www.phontron.com/class/nn4nlp2019/
http://www.phontron.com/class/nn4nlp2019/

Motivation: Encoder-decoder model

(Sutskeveret al., 2014; Cho et al., 2014)

The movie is borlng </s>

Lecoder A 4 t t t

argmax argmax argmax argmax argmax

xxn
gD
gD
~@se
D

!t t 1
The movie Is boring

Encoder

000
.l
@ i E
sbs

sentence or
"%Aoujév"" vector

1

Der Film ist langweilig

aoang T s g R e S A A o p e e cp s ) S Ao B Lo poca RO O vaye o ST a0 RGO g [ VIR BN



How to pass the sentence vector?

» Initialize decoder with encoder representation (Sutskever et

al., 2014)
@) ®
O cory |—(®
© LJ
» Transform (change dimensionality)
O O
O {transformj—» O
© L

» Input at every time step
(Kalchbrenner & Blunsom, 2013),

7

O

+ 000
L
— (000

©0

Yit-

[l
A

Yi+1
189



But: we’re cramming it all into..

The movie is boring </s>

Lecoder A 4 t t t

argmax argmax argmax argmax argmax

xxn
gD
gD
~@se
D

P 1+ 1 1
The movie Is boring

Encoder

@09
all
@ i o]
oo

a 5/’”3[6 -ff./*—/ﬂj
vector!

1

Der Film ist langweilig



Problem

» The encoder compresses the sentence into a single fixed-
size vector. This representation is expected to be a good
summary of the entire sentence.

» Disadvantage: incapability of remembering longer
sequences.

» “You can’t cram the meaning of a of a whole % &!$ing
sentence into a single $&!*ing vector!” — Ray Mooney
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Beyond a single static “crammed” vector

» What if we could use several vectors, based on the length
of the input sequence?

» ldea: when we generate the next word in MT, perhaps we
can learn to attend to the relevant source words

IS

Encoder
the IS

encoder hidden states
192



Attention: Core ldea

» When decoding, perform a linear combination of the
encoded input vectors, weighted by “attention weights”

St-1 St
— e " %

hy hz hs hy

K ey vectors

(Bahdanau et al., 2015)
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Calculating attention (1/2):
Attention weights o

1. For each query-key pair, calculate an attention score (a;
St

2. Get an attention distribution

via softmax normalization (a;

a1=.19 ao=.1 a3=.05 a4=-.03
sofhwa/x < A A A A
ai=2.1 a»-=0.1 as=-0.5 as=-1.0

query vector

*
a(c# kgi(c% k) a@ k) a(ct k)
o o Q.
Ke)/ vectors Q Q Q Q
hy hy hs hy

(Bahdanau et al., 2015)
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Calculating attention (1/2):

Attention weights o

3. Combine together value vectors (can be the encoder states,
like the key vectors) by taking the weighted sum to get ¢

Vodlue vectors

@e

(Bahdanau et al., 2015)
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Summary: Additive attention
(Bahdanau, 2015)

n
Cy = Z oy 1.For each query-key
i=1 c, pair, calculate weight a;
@) 2.Normalize via softmax
O
a(q, k) = vitanh(W,[q; K]) @) 3.Combine together

value vectors via
weighted sum to get ¢y

FENN!

(Baktdonou, 24 . .
4.Use in your model in

any part you like

a1=.79 a2=.1 a3=.05 ws1=-.03 196



Alignment matrix (Bahdanau, 2015)

=
O c v
& 88 o T A
Q o ©O @ g o
Q O € ®© N -
U = q)l_o(vmc (@) e
C ODCc 30 < OO0 3o v
_ ©® O ¥ W w << = % & <€ ~ Vv
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<end>

https://arxiv.org/pdf/1409.0473 pdf 197



https://arxiv.org/pdf/1409.0473.pdf

Enc-dec performance deteriorates rapidly
as input sentence length increases

Cho et al., (2014); Bahdanau et al. (2015)

30

25
N

15 k

BLEU score

e —— n .\. \
RNNsearCh—50 ............. I .\.‘ ....... : ........ ~ e S -

%L -~~~ RNNsearch-30.* A
5 = = RNNenc-50 S T R R S TLRTEEr e setananananss -

--- RNNenc-30 | é i BTN
0 l i | ; |

0 10 20 30 40 50 60
Sentence length

https://arxiv.org/pdf/1409.0473 .pdf
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Different forms of
attention are available
(e.g., Luong et al., 2015)



Alignment Functions: What’s a(q.k)?

» In Bahdanau et al., (2015): the alignment score function is
a single FFNN (MLP) with a single hidden layer:

» a(q, k) = vitanh(W,[q; K])

» both v, and W, are trained with the network
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More alignment functions

» Dot product (Luong et al., 2015)

» a(q, k) = q’k

» requires same size; but has no parameters!
» Bilinear (Luong et al., 2015)

» a(q, k) =q' Wk

» Scaled dot product (Vaswani et al., 2017)
q'k
ALY
» fixes problem of dot product that scale of dot product
increases as dimensions get larger

» a(q,k) =

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html 201
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A little more on
attention



Self-attention

» Attend to sentence itself (Cheng, Dong, Lapata, 2016)

The
The

BEBI is chasing a criminal on the run .

FBI
FBI

FBI
FBI
FBI
FBI
FBI

18 chasing a criminal on the run .

18
1s
18
IS
18

18

chasing

Cl

@

C,

hasing

hasing

hasing

hasing

hasing

a4 criminal on the run .

a criminal on the run .

a

a
a
a

The FBI is chasing a criminal on the run .
The "Bl is chasing a criminal on the run .

crimina
criminal

criminal

crimina

on the run .
en the run.

on the run.

on the run

https://arxiv.org/pdf/1601.06733.pdf
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What to attend to?
Some more examples



Image caption generation

» Salient parts of the image (e.g., Xu et at., 2015)

A woman is throwing a frisbee in a park.
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Character-level attention

» E.g. Reietal., 2016

x m x m
f f
h* h*
.................................................. ; L S— S L S—
L e B I e B hi o h3 ~— 3
W \ d W W W l
Ci Co C Cq Co C3
b i g b i g

Figure 2: Left: concatenation-based character architecture. Right: attention-based character architecture.

The dotted lines indicate vector concatenation.

206



Attention Is everywhere
land all you need?!] ->
More on Monday :-)
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To summarize



To sum up...
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