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It is all about sequences


[It, is, all, about, sequences]


[s, e, q, u, e, n, c, e, s]


https://blog.algorithmia.com/wp-content/uploads/2018/03/word-image-11.png

https://towardsdatascience.com/beginners-guide-to-speech-

!2

Motivation
Understanding supply and demand is easy. What is difficult to 
comprehend is what makes people like a particular stock and 
dislike another stock. This comes down to figuring out what 
news is positive for a company and what news is negative. 
There are many answers to this problem and just about any 

investor you ask has their own ideas and strategies. 
Read more: Stocks Basics: What Causes Stock Prices To 

Change? | Investopedia http://www.investopedia.com/university/
stocks/stocks4.asp#ixzz47UcBJeMH 
Follow us: Investopedia on Facebook 

The only other Republican governor in a 
competitive re-election race this year, 

according to Cook Political Report’s 
ratings, is Pat McCrory of North Carolina, 

who hasn’t made a presidential 
endorsement. However, there are 11 

Republican senators and 34 Republican 
members of the House who face 

competitive races, according to Cook. The 
only one to have endorsed Trump is Tom 

Reed, the incumbent from New York’s 
23rd Congressional District, a Republican-
leaning swing district that covers much of 

Understanding supply and demand is easy. What is 
difficult to comprehend is what makes people like a 

particular stock and dislike another stock. This 
comes down to figuring out what news is positive 
for a company and what news is negative. There 
are many answers to this problem and just about 

any investor you ask has their own ideas and 
strategies. 

Read more: Stocks Basics: What Causes Stock 
Prices To Change? | Investopedia http://
www.investopedia.com/university/stocks/

Egg futures have surged by as much as one-
third since March, the sort of move that 
would be justified if investors believed 

China’s chicken flocks were headed for an 
unfortunate fate. 

But the market’s usual participants say the 
flocks are fine. In fact, the actual price of 

eggs in the country’s markets has fallen from 
a year ago, according to government 

statistics.
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difficult to comprehend is what makes people like a 
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and what news is negative. There are many answers to 
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their own ideas and strategies. 
Read more: Stocks Basics: What Causes Stock Prices To 
Change? | Investopedia http://www.investopedia.com/
university/stocks/stocks4.asp#ixzz47UcBJeMH 
Follow us: Investopedia on Facebook 
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(most?!) interesting data is  

 

sequential in nature

Inspired by slides from S.Gouws & D. Hovy.



Challenge: Language is ambiguous

Illustration drawn by Dirk Hovy.



Challenge: Language is productive

https://twitter.com/seattlekim/status/1106687539279101954



‣ In some applications, we want to condition  
on sequential data to make a prediction  
 
 
 

‣ In other applications, we want to generate 
sequential data
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Sequence Modeling Tasks

Inspired by slides from Chris Dyer & Dirk Hovy.

generation 
problems: how to 

decode a sequence?

condition problems: 
how to represent a 

sequence?

I      like     Vince Gilligan  .

positiveSENTIMENT ANALYSIS

FemaleAUTHOR ATTRIBUTES 30+

PRON    VERB      PNAME     PNAME   PUNCT

nsubj obj

punct
name



A step back…  
How did the field evolve?



‣ Early approaches in NLP: symbolic & rule-based 

‣ In the late 80s: development of annotated corpora (especially 
the well-known Penn Treebank Wall Street Journal) 
 
 
 
 

‣ And corresponding emergence of statistical approaches 

‣ Common evaluation corpora and measures pushed the field
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NLP   ♥    Machine Learning

80s🗓
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First big jump: statistical learning

approx. 1980s

Symbolic  
Processing

Statistical 
NLP

Deep Learning  
for NLP

Epoch 1 Epoch 2

from  
hand-crafted 
rules to ML

x: the dog barks
if prev_w = DET and ..  

tag=NOUN

x: 1 0 0 1 0

w_i=dog w_i-1=the

..

e.g. Brill’s  
 rule-based  

tagger (1992)

e.g. Collin’s  
structured  

perceptron (2002)

classic sparse ’n-hot’ encoding



The emergence of  
deep learning (in NLP)
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In Speech Recognition

2010 🗓

RNNs

(Source: The Economist)



‣ Computer Vision: success of Convolutional Neural 
Networks 

‣ Speech Recognition: Recurrent Neural Networks
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In Computer Vision

2012 🗓(src: slide by Fei-Fei Li)
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Papers: Deep learning in NLP

0

23

45

68

90

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

“neural|deep learning”*

*(incl. variants of RNN/CNNs and excl. deep parsing)

 Titles of papers in ACL anthology (from 2004)

“2015 seems like the year when the full force of the 
tsunami hit the major NLP conferences” 

—Chris Manning (2015)



NLP ♥ Deep Learning

 13
approx. 1980s

Symbolic  
Processing

Statistical 
NLP

Deep Learning  
for NLP

2015

Epoch 1 Epoch 2 Epoch 3

dog: 0.2 0.1 0.3 0.10.2

barks: 0.1 0.3 0.1 0.20.3

dense representations 
(embeddings)  

from  
hand-crafted 
rules to ML

representation 
learning
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Overview

Motivation,  
Brief History, Overview

foundations

representations

beyond FFNNs

Back to the roots:  
Language Models

 Feedforward NNs 
(FFNNs)

What’s the input? 
Representations

Convolutional Neural 
Networks (CNNs)

Recurrent Neural 
Network (RNNs)

Advanced RNNs, 
Decoders

Attention? Attention!

Contextualized 
Embeddings, Fine-tuning



‣www.mentimeter.com  
Room: (see code)
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Predicting the next word:  
A Simple (?) Exercise

* (title inspired by Graham Neubig)

http://www.mentimeter.com
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More examples

https://books.google.com/

‣ Recurrent Neural ___ 

‣… is perhaps the best ___
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Why care about LMs?

https://twitter.com/verena_rieser/status/1174694748310953984

https://twitter.com/verena_rieser/status/1174694748310953984


So let’s look deeper at LMs: 
from traditional LMs to 

contextualized embeddings



‣ A computational model that can be used to either of the 
following two tasks is called a Language Model (LM): 

‣ to compute the probability of a text*  
 

‣ to compute the probability of the next word  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What is a Language Model (LM)?

* (can be a text, sentence, phrase,…)

P(today is a great day) = ??

P(day | today is a great) = ??



Why?  
Example Use Cases
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Speech Recognition

P(where is the nearest beach) > P(where is the nearest breach)

http://www.personal.psu.edu/ejp10/blogs/tlt/2011/09/understanding-speech-recogniti.html

http://www.personal.psu.edu/ejp10/blogs/tlt/2011/09/understanding-speech-recogniti.html
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Spelling Correction

 

http://www.personal.psu.edu/ejp10/blogs/tlt/2011/09/understanding-speech-recogniti.html
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You probably use a LM every day…

 

http://www.personal.psu.edu/ejp10/blogs/tlt/2011/09/understanding-speech-recogniti.html
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You probably use a LM every day…

 

http://www.personal.psu.edu/ejp10/blogs/tlt/2011/09/understanding-speech-recogniti.html


‣ Given a sequence of words:  

‣ LM models the probability:  

‣ Without loss of generality (Chain Rule):

 25

A Language Model - Formally

P(w1, …, wd)

(w1, …, wd)

P(w1, …, wd) = P(w1)P(w2 |w1)P(w3 |w1, w2)…

= P(w1)
d

∏
i=2

P(wi |w1, …, wi−1)

w1 w2 w3 w4 … wd

P(Athens|an awesome summer school this year is in)

history



‣ A common assumption in sequence modeling is to make 
the Markov assumption: 
 
 

 26

Markov assumption 

Adapted from Chris Dyer

P(x1, . . . , xd) =
d

∏
i=1

P(xi |x1, . . . , xi−1) ≈
d

∏
i=1

P(xi |xi−(n−1), . . . , xi−1)

Markov: forget “distant” past
Valid for language?  No… 

Is it practical? Often!

n-th order Markov assumption:  
history of n-1 words



‣ (Pre-deep learning) era: Learn an n-gram Language Model 

‣ n-gram: a chunk of consecutive words 

‣ n=2 (bigram): “to buy”, “buy a”, “a house”… 

‣ n=3 (trigram): “to buy a”, “buy a house”,… 

‣ Key method: collect statistics of n-grams from a corpus to 
estimate the parameters of the model (maximum likelihood)

 27

How to learn a LM?



‣ n=1, 1st order Markov assumption, history (n-1): 0

 28

Unigram LM (1st order)

P(started) unigram LM

P(w1, …, wd) = P(w1)P(w2)P(w3)…

=
d

∏
i=1

P(wi)

w1 w2 w3 w4 … wd

0
1

network cat beerweather city water

P(w)



‣ n=2, 2nd order Markov assumption, history (n-1): 1

 29

 Bigram Language Model

P(started |has) bigram LM

P(w1, …, wd) = P(w1)P(w2 |w1)P(w3 |w2)…

= P(w1)
d

∏
i=2

P(wi |wi−1)

w1 w2 w3 w4 … wd



‣ A bigram model conditions on the previous word (n=2; or: 
a window of 2 words) 
 
 

‣ A trigram model uses a history of 2 words (n=3, history 2) 
 
 
 

‣ E.g. a 5-gram LM

 30

Higher-order LMs

P(xi |xi−1)

P(xi |xi−2, xi−1)
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Sparsity problems with n-gram LMs

P(w | its water is so) =
C(its water is so w)
C(its water is so)

See for more details chapter 3 of Jurafsky & Martin. Adapted from Abigail See

Sparsity problem 2: If “its water is so” 
never occurred: prob for any w is is 0.

Sparsity problem 1: If “its water is so 
w” never occurred in the corpus: prob 

for w is 0!

What can we do? Smoothing  
(add small count to every w)

What can we do? Backoff  
(condition on lower-level n-grams)

In general: Increasing n-gram size makes sparsity problem worse. 

C=count()

http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf
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Further issues with n-gram LMs

Adapted from Graham Neubig

‣ What about similar words? 

‣ she bought a bicycle 

‣ she purchased a bicycle  

‣ Long-distance dependencies? 

‣ for programming she yesterday 
purchased her own brand new 
laptop 

‣ for running she yesterday purchased 
her brand new sportswatch

cannot share strength 
among similar words

cannot handle long-
distance dependencies



Generating text from 
a LM



‣ We can sample incrementally from a Language Model, 
one word at a time 

 34

Sample from a unigram LM

0
1

network cat beer weather city water sits

P(w)

the cat sits



‣ We can sample incrementally from a Language Model, 
one word at a time 
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Sample from a unigram LM

0
1

network cat beer weather city water sits

P(w)

cat sits the

word salad? sequences / sequential data!



‣ No more Markov assumptions 

‣ Great fit for 

‣ Arbitrary length input 

 36

Outlook: Why RNNs are so great for 
Language

the cat sits

sequences / sequential data

the cat sits there

the sleepy cat sits there

the sleepy cat which chased the dog sits



‣ Language model task:  

‣ input: sequence of words:  

‣ output: probability of next word  

‣ An Early (deep learning era) solution: a window-based n-
gram neural language model (Bengio et al., 2003)

How to learn a neural LM?

(w1, …, wd)

P(wt+1 |wt, …, w2, w1)

feed-forward neural network
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Window-based neural LM via FFNN

As the clock rang the students opened

 

discard
fixed window of n words

the

predict!
predict!

http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf
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Overview

Motivation,  
Brief History, Overview

foundations

Back to the roots:  
Language Models

 Feedforward NNs 
(FFNNs)



‣ After this recap you should: 

‣ connect the different views on FFNNs 

‣ refresh ourselves on how to represent input in NLP

 40

Feedforward Neural Network (FFNN)



 41

Neural Network



w

From biological to artificial 
neuron

x Y
McCulloch & Pitt (1943)

PERCEPTRON: 
LINEAR 

CLASSIFIER
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A single neuron

z = σ(x1w1 + x2w2 + x3w3 + x4w4 + b)
= σ(x ⋅ w + b) with x, w ∈ ℝ4

x1

x2

x3

x4

w1

w2
w3

w4

z

(bias node omitted in visualization)
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Multiple neurons

z1 = σ(x ⋅ w1 + b1)
z2 = σ(x ⋅ w2 + b2)

x1

x2

x3

x4

w11

w21

w31

w41

z1

z2

w12

w22
w32
w42

fθ : ℝ4 → ℝ2
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FFNN: abstract & functional view

“vanilla” Neural Network

̂y = softmax( f2( f1(x)))
‣ Each layer is a 

function, acts on the 
output of the layer 
below (input) 

‣ Final output: cascade 
of functions  

‣ Given the true 
output y, we 
compute the error Er

error = loss(y, ̂y)
‣ Using the chain rule, 

we can compute the 
derivative (gradient) 
of the Error wrt any 
of the intermediate 
layer weights 
(Lecture 1) 

f2

f1
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FFNN: Graphical view

x
<latexit sha1_base64="IS0GhkO40ydFyu/g3xHsuJFF+Ho="></latexit>

h1
<latexit sha1_base64="joq1NtUf7702dBvvaxZX4ikFWYM="></latexit>

y
<latexit sha1_base64="1yU1oEN0+fRWeutDbwMLwaIqGFc="></latexit>

W2
<latexit sha1_base64="ZqENc/4lKAsHKDREKpu56iP23mU="></latexit>

W1
<latexit sha1_base64="PLDg5+rLcG0lHoUECncfJO6MgKo=">AAACnXicbZHdbtMwFMed8DXCV4E7uMBaVWl8qEraSnAzrRpCGghNA9F1Ut1FjuO01hwn2CdbuyhPwyvwDtzvBvE2uOmgY+NIln7+n/+xj4+jXAoDvv/Lca9dv3Hz1tpt787de/cfNB4+2jdZoRkfsExm+iCihkuh+AAESH6Qa07TSPJhdPR2kR8ec21Epr7APOfjlE6USASjYKWw8b1FUgrTKCo/V4ex1zrFm5gYMUnpxiwMXpyEAX6JZ2HHUqemrqVuTT1LPUvRc0K8Fl4VLk9MyllFWJzBn+2wqs2YfC1oTIDPoDwRMMXVyv9q5SVCXeis5/3NHAZV2Gj6bb8OfBWCc2hu/fA2828/vb2wcUbijBUpV8AkNWYU+DmMS6pBMMkrjxSG55Qd0QkfWVQ05WZc1tOtcMsqMU4ybZcCXKsXK0qaGjNPI+tc9Ggu5xbi/3KjApI341KovACu2PKipJAYMrz4KhwLzRnIuQXKtLC9YjalmjKwH+rZIQSXn3wV9jvtoNvufPKb/W20jDX0FK2jDRSg16iPdtAeGiDmPHH6znvng/vMfed+dHeXVtc5r3mM/gl3+BuZj8t8</latexit>

fully-connected 
layers

̂y = softmax( f2( f1(x)))

f2

f1
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Multiple neurons: Vectorization

x1

x2

x3

x4

w11

w21

w31

w41

z1 = σ(x ⋅ w1 + b1)
z2 = σ(x ⋅ w2 + b2)

z1

z2

w12

w22
w32
w42

fθ : ℝ4 → ℝ2

w11 w12

w21

w31

w41

w22

w32

w42

W

x1

x2

x3

x4

x

z = σ(x ⋅ W + b)

z1

z2
=. b1

b2

+σ

forward pass

linear projection followed 

by non-linearity

σ is the layer’s 
(non-linear) 
activation 
function 
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Connecting the views: FFNNs (MLPs)

NNMLP1(x) = g(xW1 + b1)W2 + b2
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Computation Graph View

NNMLP1(x) = g(xW1 + b1)W2 + b2

x W1

MULT b1

ADD

σ

MULT

W2

ADD

b2

softmax parameters

functions

loss

What is x?
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Overview

Motivation,  
Brief History, Overview

foundations

representations

Back to the roots:  
Language Models

 Feedforward NNs 
(FFNNs)

What’s the input? 
Representations



What does ‘eienskappe’ mean?

Keyword in Context (KWIC)
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Distributional Hypothesis

"You shall know a word by the 
company it keeps" 

(Firth, J. R. 1957:11)



‣ Key idea in NLP: the meaning of a word is represented by 
the words which occur frequently close to it 

‣ One of the most successful ideas in NLP 

‣ Nowadays, we talk about representations

 53

The company it keeps



‣ Representations are distinct 

‣ Similar words (or units) have similar representations

 54

What are good representations?



Traditional sparse text encoding: 
BOW



Sparse binary text encoding: BOW

n-hot encoding



‣ Sparse high-dimensional vector of dimension |V| (=size of 
vocabulary)

 57

One-hot encoding

…
1x|V|

Symbol (word, char,..)

one-hot vector
(length V, one entry is 1)

yellow

…



‣ sb: sparse binary representation  
 
 
 

 58

One-hot encoding: Sparse binary repr.

𝕍 = {cat, dog, table}

fsb(cat) = [1,0,0]
fsb(dog) = [0,1,0]
fsb(table) = [0,0,1]

cos( fsb(cat), fsb(dog)) = 0

(Illustration adapted from S. Riedel)



‣ Representations are distinct 

‣ Similar symbols have similar representations 
 
 

‣ Despite of this, n-hot representations are often very 
powerful for text classification.

 59

Sparse binary representations



From sparse high-dim 
to continuous low-dim



‣ “Embed” symbol  
in dense low-dimensional space (d << |V|) 

‣ Dimensionality d (hyperparameter)
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Dense continuous: Embeddings

fdc(w) ↦ ℝd

𝕍 = {cat, dog, table} d = 2
E ∈ ℝ3×2

fsb(cat) = [0.7,0.8]
fsb(dog) = [0.75,0.6]

fsb(table) = [0.1,0.15]

Note: d < |V|

E
<latexit sha1_base64="UcLQQkZ/ucg95j/emm+9is4DsWY=">AAAB6HicbZDJSgNBEIZr4hbHLerRS2MQPIWZeNCLGBTBYwJmgWQIPZ2apE3PQnePEEKewIsHRbzqw3j3Ir6NneWgiT80fPx/FV1VfiK40o7zbWWWlldW17Lr9sbm1vZObnevpuJUMqyyWMSy4VOFgkdY1VwLbCQSaegLrPv9q3Fev0epeBzd6kGCXki7EQ84o9pYlet2Lu8UnInIIrgzyF982OfJ+5ddbuc+W52YpSFGmgmqVNN1Eu0NqdScCRzZrVRhQlmfdrFpMKIhKm84GXREjozTIUEszYs0mbi/O4Y0VGoQ+qYypLqn5rOx+V/WTHVw5g15lKQaIzb9KEgF0TEZb006XCLTYmCAMsnNrIT1qKRMm9vY5gju/MqLUCsW3JNCseLkS5cwVRYO4BCOwYVTKMENlKEKDBAe4AmerTvr0XqxXqelGWvWsw9/ZL39APnCkAo=</latexit>

embedding matrix

=

|V|xd
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Lookup: Representing a symbol

 http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdfAdapted from Lecture 5 (Riedel)

E
<latexit sha1_base64="UcLQQkZ/ucg95j/emm+9is4DsWY=">AAAB6HicbZDJSgNBEIZr4hbHLerRS2MQPIWZeNCLGBTBYwJmgWQIPZ2apE3PQnePEEKewIsHRbzqw3j3Ir6NneWgiT80fPx/FV1VfiK40o7zbWWWlldW17Lr9sbm1vZObnevpuJUMqyyWMSy4VOFgkdY1VwLbCQSaegLrPv9q3Fev0epeBzd6kGCXki7EQ84o9pYlet2Lu8UnInIIrgzyF982OfJ+5ddbuc+W52YpSFGmgmqVNN1Eu0NqdScCRzZrVRhQlmfdrFpMKIhKm84GXREjozTIUEszYs0mbi/O4Y0VGoQ+qYypLqn5rOx+V/WTHVw5g15lKQaIzb9KEgF0TEZb006XCLTYmCAMsnNrIT1qKRMm9vY5gju/MqLUCsW3JNCseLkS5cwVRYO4BCOwYVTKMENlKEKDBAe4AmerTvr0XqxXqelGWvWsw9/ZL39APnCkAo=</latexit>

=x..

..

..

book

symbol

sparse binary one-hot,

high-dimensional (V)


embedding matrix

dense, continuous 

representation


low-dimensional (d)

one-hot word embedding
linear projection from V->d

http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf
http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf


‣ Extract core linguistic features  

‣ Define a vector for each feature (lookup Embedding table) 

‣ Can train representation E together with the network

 63

In general, the neural way for 
extracting features:

f1, . . fn
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Computational Graph View

W1

MULT
b1

ADD

σ

MULT

W2

ADD

b2

softmax parameters

functions

loss

cool <3

lookup lookup

concat

E
<latexit sha1_base64="UcLQQkZ/ucg95j/emm+9is4DsWY=">AAAB6HicbZDJSgNBEIZr4hbHLerRS2MQPIWZeNCLGBTBYwJmgWQIPZ2apE3PQnePEEKewIsHRbzqw3j3Ir6NneWgiT80fPx/FV1VfiK40o7zbWWWlldW17Lr9sbm1vZObnevpuJUMqyyWMSy4VOFgkdY1VwLbCQSaegLrPv9q3Fev0epeBzd6kGCXki7EQ84o9pYlet2Lu8UnInIIrgzyF982OfJ+5ddbuc+W52YpSFGmgmqVNN1Eu0NqdScCRzZrVRhQlmfdrFpMKIhKm84GXREjozTIUEszYs0mbi/O4Y0VGoQ+qYypLqn5rOx+V/WTHVw5g15lKQaIzb9KEgF0TEZb006XCLTYmCAMsnNrIT1qKRMm9vY5gju/MqLUCsW3JNCseLkS5cwVRYO4BCOwYVTKMENlKEKDBAe4AmerTvr0XqxXqelGWvWsw9/ZL39APnCkAo=</latexit>

train with network 
(model parameters)



Dense continuous text encodings

great !

cool <3

How to combine word embeddings?

this is



CBOW(wi, . . , wn) =
n

∑
i

E[wi]

Dense continuous text encoding: 
e.g. continuous BOW (CBOW)

projection + CBOW

Example input document 1:

cool <3

.. .. n-hot

lookup+



is great

CBOW(wi, . . , wn) =
n

∑
i

E[wi]

+

Dense continuous text encoding: 
e.g. continuous BOW (CBOW)

CBOW representation

Example input document 2:

this !
+ +



‣ What’s the biggest limitation of BOW/CBOW? 

‣ Similar to unigram model: It disregards the order of 
items (e.g. words in a sequence) 

‣ Example: 

‣ “it was not good, it was actually terrible” 

‣ “it was not terrible, it was actually good” 

‣ A simple solution? 
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Limitation of BOW



‣ Bag of n-grams 

‣ “not good”, … 

‣ Problems: 

‣ Parameter explosion (BOW/n-hot) or even more 
averaging (CBOW) 

‣ No sharing between similar words & n-grams

 69

Possible Improvement



‣ Embedding layer E:  

‣ trained with network from scratch - task-specific 

‣ initialized with off-the-shelf pre-trained word 
embeddings (e.g., Glove, Polyglot, fastText) 

‣ Pre-trained embedding initialization typically leads to 
performance gains. Why? 

‣ train on more words 

‣ implicitly more data 

‣ Ways to obtain off-the-shelf embeddings? (word vector 
space representation?)
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Where to get task-specific E from?  
From Scratch vs Pre-trained



‣ Two major methods: 

‣ Count! (pre-deep learning method, aka “word vector 
space models”) 

‣ Predict! (core idea underlying word2vec - lecture 1)
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Embeddings: New? No!



‣ Represent the “company” of a word in terms of a word co-
occurrence-matrix, get the statistics (counts) 

‣ E.g. Latent Semantic Analysis (LSA) (Deerwester et al., 1990) 
SVD decomposition over co-occurence matrix to reduce to 
lower-dimensional space (matrix U where dim < |docs|)
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Count-based methods

https://simonpaarlberg.com/posts/2012-06-28-latent-semantic-analyses/box2.png



‣ Key idea: predict the context of a word (instead of 
capturing co-occurrence statistics in matrix C) to directly 
learn the low-dimensional word vector representation 

‣ Word2vec (family of methods) Mikolov et al. (2013) 
[Lecture 1 by Ryan] - scales well to large data
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Prediction-based methods

Illustration by Chris Manning
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Example: Cross-lingual POS tagging- 
Word embedding initialization

3.8%

10%

Mean over 21 languages  

(Plank & Agic, 2018) 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Overview

Motivation,  
Brief History, Overview

foundations

representations

Back to the roots:  
Language Models

 Feedforward NNs 
(FFNNs)

What’s the input? 
Representations



 76

As the clock rang the students opened

 

fixed window of n words

the

predict!

Window-based neural LM via FFNN

http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf


 77 http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdfAdapted from Abigail See

A fixed-window based neural LM

E

concatenation

http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf
http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf


‣ Iteratively move the n-gram window through a very large 
corpus to predict the next word at each time step 

‣ Cross-entropy loss (negative log-likelihood): 
 
 

‣ Note: typically very large vocabulary (softmax) 

‣ Workaround: negative sampling (lecture 1)
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Training the Neural n-gram LM

L = − logp(wt |wt−1 . . wt−n+1)
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What about these issues?

‣ Can it handle similar words? 

‣ she bought a bicycle 

‣ she purchased a bicycle  

‣ Long-distance dependencies? 

‣ for programming she yesterday purchased her own brand new laptop 

‣ for running she yesterday purchased her brand new sportswatch



‣ Simplest solution: 

‣ Train an <UNK> word vector, e.g., map rare words to 
UNK (count < threshold) 

‣ Problem:  

‣ Conflates a long tail into the same vector representation 

‣ Subword representations (character-level models) to the 
rescue! 

‣ More on these later (after we have seen CNNs)
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Tips for unknown words
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Overview

Motivation,  
Brief History, Overview

foundations

representations

beyond FFNNs

Back to the roots:  
Language Models

 Feedforward NNs 
(FFNNs)

What’s the input? 
Representations

Convolutional Neural 
Networks (CNNs)



CNNs / Convnets



[1] http://www.deeplearningbook.org/contents/convnets.html

feedforward NN

fixed-size representation

‣ Neural networks for processing data with a grid-like 
typology (LeCun & Bengio, 1995) 

‣ Can handle arbitrary-length inputs and reduce them down 
to a fixed size vector representation 

‣ Core idea: Parameter Sharing over Space 
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Convolutional Neural Network (CNN)

W
<latexit sha1_base64="cbYvexWYcRxOGGKyR6gpkADwvfQ=">AAAB8XicbVC7SgNBFL0bXzG+opY2g0FIFXZjoZ0RG8sI5oHZJcxOZpMhs7PLzKwQlnyDjY2FIrb+heIP2Pkh9s4mKTTxwIXDOfdyz71+zJnStv1l5ZaWV1bX8uuFjc2t7Z3i7l5TRYkktEEiHsm2jxXlTNCGZprTdiwpDn1OW/7wIvNbt1QqFolrPYqpF+K+YAEjWBvpxg2xHvhB2hp3iyW7Yk+AFokzI6Wzj7c7t/z9Xu8WP91eRJKQCk04Vqrj2LH2Uiw1I5yOC26iaIzJEPdpx1CBQ6q8dJJ4jI6M0kNBJE0JjSbq74kUh0qNQt90ZgnVvJeJ/3mdRAenXspEnGgqyHRRkHCkI5Sdj3pMUqL5yBBMJDNZERlgiYk2TyqYJzjzJy+SZrXiHFeqV3apdg5T5OEADqEMDpxADS6hDg0gIOAeHuHJUtaD9Wy9TFtz1mxmH/7Aev0B7wqViw==</latexit>

neurons in a feature map 

share the same



‣ CNNs use convolutions over the input (convolution + 
pooling) 

‣ Each convolution applies filters (or kernels; often several 
hundreds of them) and combines their results via 
pooling (to reduce the resolution of the feature map and 
the sensitivity of the output to shifts and distortion)
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What are CNNs - Terminology

W
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a convolutional layer has typically  
several feature maps (with different      ) 

 to extract different features



‣ Translational equivalence
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Intuition: Invariance

Slide by Jes Frellsen



‣ Filter (kernel) of size 3x3 

‣ “to identify indicative local predictors" (Goldberg, 2015)
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Example of a 2D convolution

Source: http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution


‣ Imagine a 1d input vector 

‣ f: [10, 50, 60, 10, 20, 40, 30] 

‣ g: [1/3, 1/3, 1/3] 

‣ Let’s compute the value at position h(3)

 87

Convolution - Filter (Kernel) example

[10, 50, 60, 10, 20, 40, 30]

[  0, 1/3,1/3,1/3, 0, 0, 0 ]

h(3) = 40
50 * 1

3 + 60 * 1
3 + 10 * 1

3 = 40

h(4) = 30

[  0, 0,   1/3,1/3,1/3, 0, 0 ]

What is this kernel doing?
computing a moving average

( f * g)(i) =
m

∑
j=1

g( j) ⋅ f(i − j + m /2)



Convolutions for Text
Collobert et al. (2011); Kim (2014)




Types of convolution

She likes strong coffee narrow/“valid” convolution

wide/“same” convolution
(padded)

<s> She likes strong coffee </s>

She likes
likes strong

strong coffee



CNN on Text

She likes strong coffee

She likes
likes strong

strong coffee

n=4 input length

din=3 embedding dim

wi=c(wi,..,wi+k-1)

g

g

g

 Wdw_i x d_out 

convolution + non-linearity

pooling

dout=4 conv output dim

pi

pi=g(wiW+b)

ci=maxj∈m(pi[j])

feature map

pooled 
feature map

dw_i=kdin=6 filter width

k=2 window length

apply same “filter”  
to each window



“soft” n-grams



Stride

http://d3kbpzbmcynnmx.cloudfront.net/wp-content/uploads/2015/11/Screen-Shot-2015-11-05-at-2.18.38-PM.png

http://d3kbpzbmcynnmx.cloudfront.net/wp-content/uploads/2015/11/Screen-Shot-2015-11-05-at-10.18.08-AM.png



‣ Max pooling: “Did you see this feature anywhere in the 
range?” (most common) 

‣ Average pooling: “How prevalent is this feature over the 
entire range”
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Types of pooling (1/3)

ci=maxj∈m(pi[j])

ci=1/m∑m pi



‣ k-Max pooling: “Did you see this feature up to k 
times?” (Kalchbrenner et al., 2014) 

‣ retain top k values in each dimension instead of only 
the best one, while preserving the order in which they 
appeare
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Types of pooling (2/3)

1 2 3 
9 6 5 
2 3 1 
7 8 1 
3 4 1

1-max pooling 2-max pooling

9 8 5
9 6 3 
7 8 5 9 8 5 

7 6 3



‣ Dynamic pooling: “Are some parts more 
informative?” (Johnson & Zhang, 2015) 

‣ split pi’s into separate groups based on domain 
knowledge and apply max-pooling to each region/group 

‣ e.g. initial sentences more predictive for news topic 
classification (Johnson & Zhang, 2015)
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Types of pooling (3/3)

1 2 3 
9 6 5 
2 3 1 
7 8 1 
3 4 1

pooling

pooling
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CNNs for Text Classification (Kim, 2014)
different “channels” for pre-trained & embeddings from scratch



‣ Main idea: apply the same parametrized function over all 
n-grams in the sequence. 

‣ This creates a series of m vectors, each representing a 
particular n-gram in the sequence 

‣ The representation is sensitive to the identity and order of 
the words in the n-gram, but the same representation will 
be extracted for a n-gram regardless of its position in the 
sequence
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CNNs - Interim summary



Two advances in 
CNNs 



‣ Hierarchical convolutions: apply a sequence of r 
convolutions that feed into each other 

‣ Resulting vectors capture increasingly larger windows 
(“receptive fields”)
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Stacked convolutions

p1
1:m1

= CONVk1U1,b1(w1 : n)

p2
1:m2

= CONVk2U2,b2(p1 : m1)

…

pr
1:mr

= CONVkrUr,br(pr−1 : mr−1) was     not     very    good

was not not very very good

not very goodwas not very



Dilated convolutions
(Strubell et al., 2017; Kalchbrenner et al,. 2016; Yu and Koltun, 2016)

‣ Each layer in the hierarchy has a stride size of k-1 

‣ speed gains over RNNs

https://www.aclweb.org/anthology/D17-1283
https://arxiv.org/pdf/1610.10099.pdf
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Overview

Motivation,  
Brief History, Overview

foundations

representations

beyond FFNNs

Back to the roots:  
Language Models

 Feedforward NNs 
(FFNNs)

What’s the input? 
Representations

Convolutional Neural 
Networks (CNNs)

Recurrent Neural 
Network (RNNs)



BREAK



RNNs



‣ RNNs (and their variants) are one of the most powerful 
and widespread architectures to date 

‣ From J.Schmidhuber’s homepage:
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Recurrent Neural Networks (RNNs)
Elman, 1990

http://people.idsia.ch/~juergen/


‣ Can handle arbitrary length inputs (just like CNNs or a 
FFNN with a CBOW input representation) 

‣ Unlike CBOW, they model the order in the sequence 

‣ Unlike vanilla CNNs, they can deal with long-distance 
dependencies (especially the gated RNN variants) 

‣ Do not need to make the Markov assumption 

‣ Opens up for a family of models:  
Conditioned generation models
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Recurrent Neural Networks (RNNs)
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Recurrent Neural Networks (RNNs)

“vanilla” Neural Network RNN

RNNs have an internal 
“memory” (state) 


which is updated as the 
sequence is read

Key Idea:

recurrence / 
memory / state

h = g(Vx + b)

ŷ = Wh + b ̂yt = Wht + b

h = g(Vxt + Uht−1 + c)
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Recurrent Neural Networks

I love New York

Input sequence 
(any length)

Hidden states

Output (sequence) 
(optional)

A family of recurrent NN architectures

x1
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<latexit sha1_base64="6ypV9iCvDDWXCEL5HqeRY4msclY=">AAAB+XicbVDLSsNAFL2pr1pfUZduQktBEEpSF7osunFZwT6gCWEynbRDJ5MwMymE0L9w6caFIm79E3f9GydtF9p6YOBwzr0zZ06QMCqVbc+N0tb2zu5eeb9ycHh0fGKennVlnApMOjhmsegHSBJGOekoqhjpJ4KgKGCkF0zuC783JULSmD+pLCFehEachhQjpSXfNOtuhNQ4CPPMd2YVN/fNmt2wF7A2ibMitVbVvXqet7K2b367wxinEeEKMyTlwLET5eVIKIoZ0VemkiQIT9CIDDTlKCLSyxfJZ1ZdK0MrjIU+XFkL9fdGjiIpsyjQk0VMue4V4n/eIFXhrZdTnqSKcLx8KEyZpWKrqMEaUkGwYpkmCAuqs1p4jATCSpdV0SU461/eJN1mw7luNB91G3ewRBkuoAqX4MANtOAB2tABDFN4gTd4N3Lj1fgwPpejJWO1cw5/YHz9APF6li8=</latexit>

Core idea: 
Parameter 
Sharing over  

Time  
(=apply  

repeatedly)
U

h = g(Vxt + Uht−1 + c)

h1 h2 h3 h4



Before we dig into details 
- The RNN abstraction



Example from Cho (2015)

Count the number of 1s



Count the number of 1s

def add1(el,s):
    if el==1: return s+1
    else: return s

v=[0,1,0,0,1,1]Two important 
components: 
• memory s 
• function add1 is 

applied to each 
symbol in the 
input one at a time to 
update the memory 

s=0
for el in v:
    s=add1(el,s)
print("count(1):", s)



‣ Input sequence of vectors: 

‣ Start state:        

‣                             consists of two functions: 

‣ function     consumes input and previous state 

‣ function     maps states to outputs
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The RNN abstraction

x1:n
<latexit sha1_base64="1Yv7OnqZEENJvk/HhqiGD5GVMnM=">AAAB+XicbVDLSsNAFL3xWesrKrhxEyyCq5LUheKq1I3LFuwD2hAm00k7dDIJM5NiCfkTNy4UEVz5C36BOzd+i5O2C209MHA4517umePHjEpl21/Gyura+sZmYau4vbO7t28eHLZklAhMmjhikej4SBJGOWkqqhjpxIKg0Gek7Y9ucr89JkLSiN+pSUzcEA04DShGSkueafZCpIZ+kN57qXPNs8wzS3bZnsJaJs6clKrHjW/6Vvuoe+Znrx/hJCRcYYak7Dp2rNwUCUUxI1mxl0gSIzxCA9LVlKOQSDedJs+sM630rSAS+nFlTdXfGykKpZyEvp7Mc8pFLxf/87qJCq7clPI4UYTj2aEgYZaKrLwGq08FwYpNNEFYUJ3VwkMkEFa6rKIuwVn88jJpVcrORbnS0G3UYIYCnMApnIMDl1CFW6hDEzCM4QGe4NlIjUfjxXidja4Y850j+APj/Qeh4pda</latexit>

s0
<latexit sha1_base64="A6RWsBRMW2IFwes8+VMPbvldk1I=">AAAB83icbVDLSsNAFL2pr1pfVcGNm8EiuCpJXeiy1I3LFuwDmlAm00k7dDIJMxOhhP6GGxeKuO1f+AXu3PgtTtIutPXAwOGce7lnjh9zprRtf1mFjc2t7Z3ibmlv/+DwqHx80lFRIgltk4hHsudjRTkTtK2Z5rQXS4pDn9OuP7nL/O4jlYpF4kFPY+qFeCRYwAjWRnLdEOuxH6RqYM8G5YpdtXOgdeIsSaV+1vpm88ZHc1D+dIcRSUIqNOFYqb5jx9pLsdSMcDoruYmiMSYTPKJ9QwUOqfLSPPMMXRpliIJImic0ytXfGykOlZqGvpnMMqpVLxP/8/qJDm69lIk40VSQxaEg4UhHKCsADZmkRPOpIZhIZrIiMsYSE21qKpkSnNUvr5NOrepcV2st00YDFijCOVzAFThwA3W4hya0gUAMT/ACr1ZiPVtv1vtitGAtd07hD6z5DwDElVs=</latexit>

R
<latexit sha1_base64="4nihYO00+1zs3A6JVkc3lXq1vVk=">AAAB+HicbVDLSsNAFL3xWeOjUZduBkvBVUnqQjdi0Y3LKvYBbQiT6aQdOnkwMxFq6Je4EVTErT/h3o34N07aLrT1wMDhnHu5Z46fcCaVbX8bS8srq2vrhQ1zc2t7p2jt7jVlnApCGyTmsWj7WFLOItpQTHHaTgTFoc9pyx9e5n7rjgrJ4uhWjRLqhrgfsYARrLTkWcVyN8Rq4AeZ9OyxeeNZJbtiT4AWiTMjpfMP8yx5+jLrnvXZ7cUkDWmkCMdSdhw7UW6GhWKE07HZTSVNMBniPu1oGuGQSjebBB+jslZ6KIiFfpFCE/X3RoZDKUehryfzlHLey8X/vE6qglM3Y1GSKhqR6aEg5UjFKG8B9ZigRPGRJpgIprMiMsACE6W7MnUJzvyXF0mzWnGOK9Vru1S7gCkKcACHcAQOnEANrqAODSCQwgM8w4txbzwar8bbdHTJmO3swx8Y7z83jpXL</latexit>

O
<latexit sha1_base64="KZgCr0X/R48gwtOcAm5d6WPcq74=">AAAB+HicbVDLSsNAFL3xWeOjUZdugqXgqiR1oRux6MadFewD2hAm00k7dDIJMxOhhn6JG0FF3PoT7t2If+Ok7UJbDwwczrmXe+YECaNSOc63sbS8srq2XtgwN7e2d4rW7l5TxqnApIFjFot2gCRhlJOGooqRdiIIigJGWsHwMvdbd0RIGvNbNUqIF6E+pyHFSGnJt4rlboTUIAgz6Ttj89q3Sk7FmcBeJO6MlM4/zLPk6cus+9ZntxfjNCJcYYak7LhOorwMCUUxI2Ozm0qSIDxEfdLRlKOISC+bBB/bZa307DAW+nFlT9TfGxmKpBxFgZ7MU8p5Lxf/8zqpCk+9jPIkVYTj6aEwZbaK7bwFu0cFwYqNNEFYUJ3VxgMkEFa6K1OX4M5/eZE0qxX3uFK9cUq1C5iiAAdwCEfgwgnU4Arq0AAMKTzAM7wY98aj8Wq8TUeXjNnOPvyB8f4DMwKVyA==</latexit>

RNN(s0,x1:n)
<latexit sha1_base64="6BKJAN1Wro0Ab238zVdJq3k0xmU=">AAACDXicbVDLSsNAFJ3UV62vqks3oVWoKCWpC8VV0Y2rUsU+oClhMp20QyeTMDMRQ8gPuHHjh7hxoYhb9+76N07aCtp6YODMOfdy7z1OQImQhjHSMguLS8sr2dXc2vrG5lZ+e6cp/JAj3EA+9XnbgQJTwnBDEklxO+AYeg7FLWd4mfqtO8wF8dmtjALc9WCfEZcgKJVk5/dvarWS5UE5cNxY2EZy/PO5t2PznCXJYS5n54tG2RhDnyfmlBSrBevoaVSN6nb+y+r5KPQwk4hCITqmEchuDLkkiOIkZ4UCBxANYR93FGXQw6Ibj69J9AOl9HTX5+oxqY/V3x0x9ISIPEdVpquKWS8V//M6oXTPujFhQSgxQ5NBbkh16etpNHqPcIwkjRSBiBO1q44GkEMkVYBpCObsyfOkWSmbJ+XKtUrjAkyQBXugAErABKegCq5AHTQAAg/gGbyCN+1Re9HetY9JaUab9uyCP9A+vwEAH53X</latexit>

(Graphical illustration - recursive - from Yoav Goldberg’s primer, 2015)

si�1
<latexit sha1_base64="c96LUYM+Zu1bTIkKYnPDJ6NfYJc=">AAAB+nicbVC7TsMwFHXKq5RXCiOLoUIqA1VSBhgrWBiLRB9SE0WO67RWHSeyHVAV8g18AQsDCLHyBXwCGx/CjtN2gJYjWTo6517d4+PHjEplWV9GYWl5ZXWtuF7a2Nza3jHLu20ZJQKTFo5YJLo+koRRTlqKKka6sSAo9Bnp+KPL3O/cEiFpxG/UOCZuiAacBhQjpSXPLDshUkM/SKWX0hM7y0qeWbFq1gRwkdgzUmkcVL8/Hpzjpmd+Ov0IJyHhCjMkZc+2YuWmSCiKGclKTiJJjPAIDUhPU45CIt10Ej2DR1rpwyAS+nEFJ+rvjRSFUo5DX0/mQeW8l4v/eb1EBeduSnmcKMLx9FCQMKgimPcA+1QQrNhYE4QF1VkhHiKBsNJt5SXY819eJO16zT6t1a91GxdgiiLYB4egCmxwBhrgCjRBC2BwBx7BM3gx7o0n49V4m44WjNnOHvgD4/0HU+uXCg==</latexit>

si
<latexit sha1_base64="xSxKfSt43C94x4xlsmknRFVO7BU=">AAAB+HicbVC7SgNBFL0bXzE+sirY2AwGwSrsxkLLEBvLBMwDkmWZncwmQ2YfzMwKcdkvsbFQxMLGb/AL7Gz8FmeTFJp4YOBwzr3cM8eLOZPKsr6Mwtr6xuZWcbu0s7u3XzYPDjsySgShbRLxSPQ8LClnIW0rpjjtxYLiwOO0602uc797R4VkUXirpjF1AjwKmc8IVlpyzfIgwGrs+al0U5ZlJdesWFVrBrRK7AWp1I9b3+yt8dF0zc/BMCJJQENFOJayb1uxclIsFCOcZqVBImmMyQSPaF/TEAdUOukseIbOtDJEfiT0CxWaqb83UhxIOQ08PZnHlMteLv7n9RPlXzkpC+NE0ZDMD/kJRypCeQtoyAQlik81wUQwnRWRMRaYKN1VXoK9/OVV0qlV7YtqraXbaMAcRTiBUzgHGy6hDjfQhDYQSOABnuDZuDcejRfjdT5aMBY7R/AHxvsP1baW5Q==</latexit>

yi
<latexit sha1_base64="is9cw6J5Rcd9jcudH34ryzyKDUE=">AAAB+HicbVDLSsNAFL3xWeujUZeKBIvgqiR1ocuiG5ct2Ae0IUymk3boZBJmJkIMXfoVblwo4tZVv8Od3+BPOGm70NYDA4dz7uWeOX7MqFS2/WWsrK6tb2wWtorbO7t7JXP/oCWjRGDSxBGLRMdHkjDKSVNRxUgnFgSFPiNtf3ST++17IiSN+J1KY+KGaMBpQDFSWvLMUi9EaugHWepldDwuembZrthTWMvEmZNy7XjS+H48mdQ987PXj3ASEq4wQ1J2HTtWboaEopiRcbGXSBIjPEID0tWUo5BIN5sGH1tnWulbQST048qaqr83MhRKmYa+nsxjykUvF//zuokKrtyM8jhRhOPZoSBhloqsvAWrTwXBiqWaICyozmrhIRIIK91VXoKz+OVl0qpWnItKtaHbuIYZCnAEp3AODlxCDW6hDk3AkMATvMCr8WA8G2/G+2x0xZjvHMIfGB8/7UmW9Q==</latexit>

xi
<latexit sha1_base64="D1u60Ue08NlPi8C0pNtc860Pzww=">AAAB+HicbVC7SgNBFL3rM8ZHVgUbm8EgWIXdWGgZYmOZgHlAsiyzk9lkyOyDmVkxLvslNhaKWNj4DX6BnY3f4mySQhMPDBzOuZd75ngxZ1JZ1pexsrq2vrFZ2Cpu7+zulcz9g7aMEkFoi0Q8El0PS8pZSFuKKU67saA48DjteOOr3O/cUiFZFN6oSUydAA9D5jOClZZcs9QPsBp5fnrnpizLiq5ZtirWFGiZ2HNSrh01v9lb/aPhmp/9QUSSgIaKcCxlz7Zi5aRYKEY4zYr9RNIYkzEe0p6mIQ6odNJp8AydamWA/EjoFyo0VX9vpDiQchJ4ejKPKRe9XPzP6yXKv3RSFsaJoiGZHfITjlSE8hbQgAlKFJ9ogolgOisiIywwUbqrvAR78cvLpF2t2OeValO3UYcZCnAMJ3AGNlxADa6hAS0gkMADPMGzcW88Gi/G62x0xZjvHMIfGO8/3WiW6g==</latexit>

R,O
<latexit sha1_base64="u0am7LyBtHIlFKoBa9IWl/4cR2o=">AAAB63icbVC7SgNBFL0bXzG+opaKDAbBQsJuLLQM2tiZiHlAsoTZyWwyZHZ2mZkVwpLS1sZCEVv/Id9h5zf4E84mKTTxwIXDOfdy7z1exJnStv1lZZaWV1bXsuu5jc2t7Z387l5dhbEktEZCHsqmhxXlTNCaZprTZiQpDjxOG97gOvUbD1QqFop7PYyoG+CeYD4jWKfS3dltrpMv2EV7ArRInBkplA/H1e/Ho3Glk/9sd0MSB1RowrFSLceOtJtgqRnhdJRrx4pGmAxwj7YMFTigyk0mt47QiVG6yA+lKaHRRP09keBAqWHgmc4A676a91LxP68Va//STZiIYk0FmS7yY450iNLHUZdJSjQfGoKJZOZWRPpYYqJNPGkIzvzLi6ReKjrnxVLVpHEFU2ThAI7hFBy4gDLcQAVqQKAPT/ACr1ZgPVtv1vu0NWPNZvbhD6yPH9TgkSQ=</latexit>

U

https://arxiv.org/abs/1510.00726


 112

The RNN abstraction - More formally

U

si�1
<latexit sha1_base64="c96LUYM+Zu1bTIkKYnPDJ6NfYJc=">AAAB+nicbVC7TsMwFHXKq5RXCiOLoUIqA1VSBhgrWBiLRB9SE0WO67RWHSeyHVAV8g18AQsDCLHyBXwCGx/CjtN2gJYjWTo6517d4+PHjEplWV9GYWl5ZXWtuF7a2Nza3jHLu20ZJQKTFo5YJLo+koRRTlqKKka6sSAo9Bnp+KPL3O/cEiFpxG/UOCZuiAacBhQjpSXPLDshUkM/SKWX0hM7y0qeWbFq1gRwkdgzUmkcVL8/Hpzjpmd+Ov0IJyHhCjMkZc+2YuWmSCiKGclKTiJJjPAIDUhPU45CIt10Ej2DR1rpwyAS+nEFJ+rvjRSFUo5DX0/mQeW8l4v/eb1EBeduSnmcKMLx9FCQMKgimPcA+1QQrNhYE4QF1VkhHiKBsNJt5SXY819eJO16zT6t1a91GxdgiiLYB4egCmxwBhrgCjRBC2BwBx7BM3gx7o0n49V4m44WjNnOHvgD4/0HU+uXCg==</latexit>

si
<latexit sha1_base64="xSxKfSt43C94x4xlsmknRFVO7BU=">AAAB+HicbVC7SgNBFL0bXzE+sirY2AwGwSrsxkLLEBvLBMwDkmWZncwmQ2YfzMwKcdkvsbFQxMLGb/AL7Gz8FmeTFJp4YOBwzr3cM8eLOZPKsr6Mwtr6xuZWcbu0s7u3XzYPDjsySgShbRLxSPQ8LClnIW0rpjjtxYLiwOO0602uc797R4VkUXirpjF1AjwKmc8IVlpyzfIgwGrs+al0U5ZlJdesWFVrBrRK7AWp1I9b3+yt8dF0zc/BMCJJQENFOJayb1uxclIsFCOcZqVBImmMyQSPaF/TEAdUOukseIbOtDJEfiT0CxWaqb83UhxIOQ08PZnHlMteLv7n9RPlXzkpC+NE0ZDMD/kJRypCeQtoyAQlik81wUQwnRWRMRaYKN1VXoK9/OVV0qlV7YtqraXbaMAcRTiBUzgHGy6hDjfQhDYQSOABnuDZuDcejRfjdT5aMBY7R/AHxvsP1baW5Q==</latexit>

yi
<latexit sha1_base64="is9cw6J5Rcd9jcudH34ryzyKDUE=">AAAB+HicbVDLSsNAFL3xWeujUZeKBIvgqiR1ocuiG5ct2Ae0IUymk3boZBJmJkIMXfoVblwo4tZVv8Od3+BPOGm70NYDA4dz7uWeOX7MqFS2/WWsrK6tb2wWtorbO7t7JXP/oCWjRGDSxBGLRMdHkjDKSVNRxUgnFgSFPiNtf3ST++17IiSN+J1KY+KGaMBpQDFSWvLMUi9EaugHWepldDwuembZrthTWMvEmZNy7XjS+H48mdQ987PXj3ASEq4wQ1J2HTtWboaEopiRcbGXSBIjPEID0tWUo5BIN5sGH1tnWulbQST048qaqr83MhRKmYa+nsxjykUvF//zuokKrtyM8jhRhOPZoSBhloqsvAWrTwXBiqWaICyozmrhIRIIK91VXoKz+OVl0qpWnItKtaHbuIYZCnAEp3AODlxCDW6hDk3AkMATvMCr8WA8G2/G+2x0xZjvHMIfGB8/7UmW9Q==</latexit>

xi
<latexit sha1_base64="D1u60Ue08NlPi8C0pNtc860Pzww=">AAAB+HicbVC7SgNBFL3rM8ZHVgUbm8EgWIXdWGgZYmOZgHlAsiyzk9lkyOyDmVkxLvslNhaKWNj4DX6BnY3f4mySQhMPDBzOuZd75ngxZ1JZ1pexsrq2vrFZ2Cpu7+zulcz9g7aMEkFoi0Q8El0PS8pZSFuKKU67saA48DjteOOr3O/cUiFZFN6oSUydAA9D5jOClZZcs9QPsBp5fnrnpizLiq5ZtirWFGiZ2HNSrh01v9lb/aPhmp/9QUSSgIaKcCxlz7Zi5aRYKEY4zYr9RNIYkzEe0p6mIQ6odNJp8AydamWA/EjoFyo0VX9vpDiQchJ4ejKPKRe9XPzP6yXKv3RSFsaJoiGZHfITjlSE8hbQgAlKFJ9ogolgOisiIywwUbqrvAR78cvLpF2t2OeValO3UYcZCnAMJ3AGNlxADa6hAS0gkMADPMGzcW88Gi/G62x0xZjvHMIfGO8/3WiW6g==</latexit>

R,O
<latexit sha1_base64="u0am7LyBtHIlFKoBa9IWl/4cR2o=">AAAB63icbVC7SgNBFL0bXzG+opaKDAbBQsJuLLQM2tiZiHlAsoTZyWwyZHZ2mZkVwpLS1sZCEVv/Id9h5zf4E84mKTTxwIXDOfdy7z1exJnStv1lZZaWV1bXsuu5jc2t7Z387l5dhbEktEZCHsqmhxXlTNCaZprTZiQpDjxOG97gOvUbD1QqFop7PYyoG+CeYD4jWKfS3dltrpMv2EV7ArRInBkplA/H1e/Ho3Glk/9sd0MSB1RowrFSLceOtJtgqRnhdJRrx4pGmAxwj7YMFTigyk0mt47QiVG6yA+lKaHRRP09keBAqWHgmc4A676a91LxP68Va//STZiIYk0FmS7yY450iNLHUZdJSjQfGoKJZOZWRPpYYqJNPGkIzvzLi6ReKjrnxVLVpHEFU2ThAI7hFBy4gDLcQAVqQKAPT/ACr1ZgPVtv1vu0NWPNZvbhD6yPH9TgkSQ=</latexit>

(Graphical illustration - recursive - from Yoav Goldberg’s primer, 2015)

https://arxiv.org/abs/1510.00726


‣ (Notation from Yoav Goldberg’s primer, 2015)
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RNN: Unrolled over time

(Graphical illustration - recursive - from Yoav Goldberg’s primer, 2015)

https://arxiv.org/abs/1510.00726
https://arxiv.org/abs/1510.00726


‣ (Notation from Yoav Goldberg’s primer, 2015)
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Expansion at time step 4

(Graphical illustration - recursive - from Yoav Goldberg’s primer, 2015)

https://arxiv.org/abs/1510.00726
https://arxiv.org/abs/1510.00726
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Training a RNN, parameter tying
̂yt = Wht + b

h = g(Vxt + Uht−1)

x1 x2h0

h1 h2

ŷ1 ŷ2

h3

x3

ŷ3

x4

h4

ŷ4

y1

cost

y2

cost

y2

cost

y4

cost

F

the unrolled graph 
is a DAG 

computational 
graph, we can 
backprop back

Parameter tying: the 
parameters are shared 

across time steps! 
Derivatives accumulated.

Pros: - reduce #params

- model arbitrary lengths

U Inspired by Chris Dyer’s lecture

Backpropagation  
through time (BPTT, Werbos, 1990).



X

Y

RNN

‣ We process a sequence x by 
applying a recurrence formula at 
every time step i:
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A closer look: inside an RNN

hi = f✓(hi�1,xi)
<latexit sha1_base64="6PcgH3UU+xMDla36dTl8WP4Sn+c="></latexit>

inputprevious state

new state

function 
parametrized by 𝜃 



X

Y

RNN

‣ Simple vanilla RNN (Elman, 1990)
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Vanilla RNN

hi = f✓(hi�1,xi)
<latexit sha1_base64="6PcgH3UU+xMDla36dTl8WP4Sn+c="></latexit>

RNN: example instantiation  
of function 

parametrized by 𝜃 

̂yt = Wht + b
h = g(Vxt + Uht−1)
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Summary of Views:

Illustrations by G.Neubig, 2018 http://www.phontron.com/class/mtandseq2seq2018/assets/slides/mt-fall2018.chapter6.pdf

http://www.phontron.com/class/mtandseq2seq2018/assets/slides/mt-fall2018.chapter6.pdf


RNN Language Model
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Training a RNN LM

̂yt = softmax(Wht + b) ∈ ℝ|V|

ht = g(Vxt + Uht−1 + c)

h0

h1 h2

ŷ1 ŷ2

h3

ŷ3

h4

ŷ4

y1

cost

y2

cost

y2

cost

y4

cost

F

See Yoav Goldberg’s book Sec.2.7.1

the cats of Athens

predicted prob  
distributions

neg log prob of w

true word  
(one-hot)

LCE(ŷ, y) = − ∑
i

yilog( ̂yi)

LCEhard
(ŷ, y) = − log( ̂yi)

sum over all costs
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What about these issues?

‣ Can it handle similar words? 

‣ she bought a bicycle 

‣ she purchased a bicycle  

‣ Long-distance dependencies? 

‣ for programming she yesterday purchased her own brand new laptop 

‣ for running she yesterday purchased her brand new sportswatch

However, in practice the vanilla RNN  
has some trouble.. more soon
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Generate with a RNN LM - some fun!

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

character-level RNN-LM

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


 123

Generate with a RNN LM - some fun!

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


‣ LM: a model that predicts the next word 

‣ RNN: a family of neural networks 

‣ to model sequential input of any length 

‣ apply the same parameters on each time step 

‣ can optionally produce output at each time step 

‣ RNN’s are great as LMs. But they can be used for much 
more!
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RNNs - Interim summary



Common Usage 
Patterns



‣ Use last state to predict y 

‣ sentence encoding 

‣ Calculate loss and backprob
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Example: An RNN as acceptor

loss (pred_y, y)



‣ Use average of states to predict y 

‣ other sentence encoding
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Example: An RNN as acceptor

take element-wise max  
or mean of hidden states



‣ Use last state as encoding of the information in the 
sequence; use as “feature” in other NN 

‣ encode, not predict 

‣ E.g. character RNN

 128

Example: An RNN as encoder
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RNN as Transducer

many to manyIllustration adapted from Karpathy

‣ predict an output  
for each  
time step t 

‣ E.g. Tagging 
(POS, NER)

loss loss loss

sum

total loss



BiLSTM BiLSTM BiLSTM

DET ADJ NOUN

cat
char 

BiLSTMred
char 

BiLSTM
the

char 
BiLSTM

t h e c a tr e d

Combining them - a hierarchical RNN: 
Example for POS

(Plank et al., 2016)

‣ Use RNN transducer and lower-level RNN encoder for 
characters (more in a second)

character-level 
encoder

RNN transducer
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RNN as generator

one to many

Illustration adapted from Karpathy

‣ Conditional  
generation 

‣ E.g. image 
caption generation,  
speech synthesis
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RNN encoder-decoder (seq2seq)

many to many

Illustration adapted from Karpathy

‣ Both input and output  
are a sequence



Deeper, better 
models?



The person who hunts ducks out on the weekends
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Only left to right?

… person who hunts ducks out …

… …

Example adapted from Rao & McMahan, 2018 https://en.wikipedia.org/wiki/Garden-path_sentence

https://en.wikipedia.org/wiki/Garden-path_sentence
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Bidirectional RNNs

… person who hunts ducks out …

… …

… …

hf
i

<latexit sha1_base64="iS30of6ZdSpPCYuUGAQgdC/S7z0=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae005JJM21oJhmSjFKG/ocbF4q49V/c+Tdm2llo64HA4Zx7uScniDnTxnW/ncLa+sbmVnG7tLO7t39QPjxqaZkoQptEcqk6AdaUM0GbhhlOO7GiOAo4bQeT28xvP1KlmRQPZhpTP8IjwUJGsLFSvxdhMw7CdDxg/XA2KFfcqjsHWiVeTiqQozEof/WGkiQRFYZwrHXXc2Pjp1gZRjidlXqJpjEmEzyiXUsFjqj203nqGTqzyhCFUtknDJqrvzdSHGk9jQI7maXUy14m/ud1ExNe+ykTcWKoIItDYcKRkSirAA2ZosTwqSWYKGazIjLGChNjiyrZErzlL6+SVq3qXVRr95eV+k1eRxFO4BTOwYMrqMMdNKAJBBQ8wyu8OU/Oi/PufCxGC06+cwx/4Hz+AOUVksQ=</latexit>

hb
i

<latexit sha1_base64="mA/F9MxaZO20CFcJ3CLEbA4Z+B4=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae005JJM21oJhmSjFKG/ocbF4q49V/c+Tdm2llo64HA4Zx7uScniDnTxnW/ncLa+sbmVnG7tLO7t39QPjxqaZkoQptEcqk6AdaUM0GbhhlOO7GiOAo4bQeT28xvP1KlmRQPZhpTP8IjwUJGsLFSvxdhMw7CdDxg/WA2KFfcqjsHWiVeTiqQozEof/WGkiQRFYZwrHXXc2Pjp1gZRjidlXqJpjEmEzyiXUsFjqj203nqGTqzyhCFUtknDJqrvzdSHGk9jQI7maXUy14m/ud1ExNe+ykTcWKoIItDYcKRkSirAA2ZosTwqSWYKGazIjLGChNjiyrZErzlL6+SVq3qXVRr95eV+k1eRxFO4BTOwYMrqMMdNKAJBBQ8wyu8OU/Oi/PufCxGC06+cwx/4Hz+AN8BksA=</latexit>

hi = [hf
i ;h

b
i ]

<latexit sha1_base64="fMZo9jjic+o/Hk2rcrJHhon4av0=">AAACF3icbVDLSsNAFJ3UV62vqEs3Q4sgCCGpCwURim5cVrAPaGKYTCft0MmDmYkQQv6iG3/FjQtF3Oquf+Ok7aK2Hhg495x7mXuPFzMqpGlOtNLa+sbmVnm7srO7t3+gHx61RZRwTFo4YhHvekgQRkPSklQy0o05QYHHSMcb3RV+55lwQaPwUaYxcQI0CKlPMZJKcnXDDpAcen42dGkOb2BvoX7y8+vF0ssdV6+ZhjkFXCXWnNQaVft8PGmkTVf/sfsRTgISSsyQED3LjKWTIS4pZiSv2IkgMcIjNCA9RUMUEOFk07tyeKqUPvQjrl4o4VRdnMhQIEQaeKqzWFMse4X4n9dLpH/lZDSME0lCPPvITxiUESxCgn3KCZYsVQRhTtWuEA8RR1iqKCsqBGv55FXSrhvWhVF/UGncghnK4ARUwRmwwCVogHvQBC2AwRi8gnfwob1ob9qn9jVrLWnzmWPwB9r3L+Hko1w=</latexit>



‣ Multiple layers of RNNs, e.g., bi-RNNs
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Stacked RNNs

<w> 

b 

y 

</w>a letter

O TEXT O

~w ~c

by



Guards against the long 
tail?  

Subword representations



‣ So far we saw <UNK> 

‣ But that conflates a lot of information into a single 
<UNK> representations 

‣ Are we better of modeling at the subword level?
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OOVs (out-of-vocabulary) words



Subword representations: Characters

(Plank et al., 2016 for POS;  
Ling et al., 2015 for NER)

<w>
c
a
t
s

</w>

Juli loves cats

PROPN VERB NOUN

~w ~c

bi* (85% noun  
in Danish)

*able (98% adj  
in WSJ)



‣ Representations: 

‣ Characters  

‣ Bytes (e.g., Gillick et al., 2015; Plank et al., 2016) 

‣ Byte-Pair Encoding (BPE) (Sennerich et al., 2016) 

‣ Modeling choices: 

‣ RNN-variants, CNNs,… 

‣ How to leverage the representations (only char level, 
combine, …)
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How to model subwords?
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Overview

Motivation,  
Brief History, Overview

foundations

representations

beyond FFNNs

Back to the roots:  
Language Models

 Feedforward NNs 
(FFNNs)

What’s the input? 
Representations

Convolutional Neural 
Networks (CNNs)

Recurrent Neural 
Network (RNNs)

Advanced RNNs, 
Decoders



‣ RNN = “vanilla” RNN 

‣ RNN flavors (=gated RNNs): 

‣ GRU                  and LSTMs 

‣ Why? Problem of RNNs: Vanishing gradients!
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A note on terminology



Gated RNN 
architectures



‣ Example: 

‣ The cat, which ate a …., was full 

‣ The cats, which … , were full 

‣ Backprop can have difficulties with long sequences: 
vanishing gradient problem 

‣ if the gradient becomes very close to zero:  

‣ is it because there is no dependency in the data?  

‣ or because of a wrong configuration of the 
parameters—the vanishing gradient condition?
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Vanishing Gradient



‣ Easier to catch. If the gradient becomes to big, then the 
SGD update becomes very large: 
 
 

‣ This might cause bad updates: too large updates, large loss 

‣ In the worst case, you might get NaNs or Infs 

‣ Solution: gradient clipping (scale down before update)
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Exploding Gradients
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Vanishing Gradient

Slide by Abigail See
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Why is Vanishing Gradient a problem?

Slide by Abigail See



‣ LM task:  
 
“When she bought her laptop, she found that the keyboard 
layout was Danish. She went back to the shop to ask if the 
owner of the shop had another keyboard layout. 
Unfortunately this was not the case, so she kept the ____” 

‣ Model needs to learn a dependency to “laptop”  

‣ But if the gradients are small, the model won’t learn this 

‣ RNNs are better at syntactic recency [Linzen et al., 2016]
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Effect of vanishing gradient
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RNN unit

h = tanh(Vxt + Uht−1 + b)

tanh

ht−1

xt

softmax

ŷt

ht

hi = f✓(hi�1,xi)
<latexit sha1_base64="6PcgH3UU+xMDla36dTl8WP4Sn+c="></latexit>

At each time step, the 
hidden state is updated:

in a vanilla RNN 
the hidden state is 
constantly being 

rewritten



Gated RNN architectures: 
RNN flavors with a 
separate memory
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GRU (Gated recurrent Unit) - simplified

tanh

xt

softmax

ŷt

ct

c̃ = tanh(Ucxt + Wcct−1 + bc)

‣ Cho et al. (2014) - key idea: dynamic memory update c (h=c) 

‣ at every step t, consider overwriting candidate memory c

ct−1
γU = σ(UUxt + WUct−1 + bU)

“update” gate

candidate for overwriting cell

ct = γU ⊙ c̃ + (1 − γU) ⊙ ct−1

σ

c̃ γU

“choose which bits to update”

element-wise multiplication
update if gamma_U > 0

sigmoid gate: values 
between 0 and 1
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GRU (Gated recurrent Unit) - full

c̃ = tanh(Ucxt + Wc(γR ⊙ ct−1) + bc)

ct = γU ⊙ c̃ + (1 − γU) ⊙ ct−1

γR = σ(URxt + WRct−1 + bR)

‣ GRU: creates “adaptive” connections 

‣ perhaps prune some unnecessary connections adaptively 

Update gate: controls what 
parts of the hidden state are 

updated vs preserved

Reset gate: controls what parts 
of the previous hidden state are 
used to compute new content

γU = σ(UUxt + WUct−1 + bU)

How does this help the vanishing gradient problem? 
GRUs make it easier to retain info long-term (e.g. by not updating bits)

"Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation", Cho et al. 2014, https://arxiv.org/pdf/1406.1078v3.pdf

Slide inspired by Abigail See

all vectors of same size
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LSTM (Long-Short Term Memory)

‣ Introduced by Hochreiter & Schmidhuber 1997 

‣ Separate memory cell c and hidden state h 

‣ Three gates: 

‣ forget gate: controls what is kept and forgotten from previous 
cell state 

‣ input gate: controls what part of the new cell content are 
written to the cell 

‣ output gate: controls what part of the new cell content are 
written to the hidden state
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LSTM (Long-Short Term Memory)

Slide by Abigail See
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LSTM (Long-Short Term Memory)

Slide by Abigail See



‣ GRU is more efficient to learn (fewer parameters) 

‣ Which is better? 

‣ No conclusive evidence that one is always superior to 
the other 

‣ LSTM is typically a good starting choice 

‣ Suggestion: switch to GRU if you want a more efficient 
model
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GRU vs LSTM



‣ Is the vanishing gradient problem specific to RNNs?  

‣ No! Also for deep FFNN and ConvNets  

‣ Solution: add direct “skip” connections (ResNet, residual 
connections) - proposed by He et al., (2015) 

‣ i.e. add F(x) + x, instead of F(x) 

‣ allows for training deeper models
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Residual connections

https://arxiv.org/pdf/1512.03385.pdf


LSTMs are everywhere… 



Let’s look briefly at different 
decoders via examples  



BiLSTM BiLSTM BiLSTM

DET ADJ NOUN

cat
char 

BiLSTMred
char 

BiLSTM
the

char 
BiLSTM

t h e c a tr e d

A very common POS tagger

‣ Use bi-LSTM transducer with a lower-level bi-LSTM 
encoder for characters and a softmax decoder

character-level 
encoder

RNN transducer

MLP decoder



Ac
cu

ra
cy

90.0

92.5

95.0

97.5

100.0

English Indoeuropean Non-Indo. Germanic Romance Slavic

TnT (HMM) bi-LSTM  words bi-LSTM chars words+characters

17 coarse POS tags,  
experiments over 22 languages of UD 1.2,  (Plank et al., 2016)  161

the pow
er of  

subwor
d repre

sentati
ons

POS tagging on many languages



A closer look at non-IE languages

typology by  
(Vania & Lopez, 2017)
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‣ Example:     

‣ (Huang et al., 2015): from RNN to bidirectional LSTM-CRF
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Named Entity Recognition (NER)

CRF decoderMLP decoder

Bill B-PER lives  in Athens B-LOC



Softmax over all possible tag sequences Y;  
dynamic programming

‣ Stronger sequential nature (e.g., I-PER after B-PER) 
 
 
 
Lample et al., (2016):
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CRF decoder

Bill B-PER lives  in Athens B-LOCDoe I-PER

P: output of  bi-LSTM projected onto 
hidden layer (of size n x k) - 

Pij: score of jth tag for i-th word 
 

P is input to the CRF layer

CRF maintains matrix A: transition scores 
matrix (k x k tags plus start/end)-  

Aij score from tag i to j



‣ The model so far is restricted to subwords to within words 

‣ Recent SOTA model  

‣ context-sensitive  
character and  
word representations 

‣ Models trained  
synchronously &  
then combined 

Meta-BiLSTM

(Bohnet et al., 2018)

http://nlpprogress.com/english/part-of-speech_tagging.html
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Google’s Neural MT System  
(Wu et al., 2016) 

https://arxiv.org/pdf/1609.08144.pdf

‣ deep bidirectional 
LSTM (stacked) with 
residual connections 
and attention 

‣ huge improvements 
in MT quality

‣ Now (2019 onwards): other approaches have become dominant for 
certain NLP tasks (e.g. the Transformer) - see more on Monday (Arianna)

https://arxiv.org/pdf/1609.08144.pdf
https://arxiv.org/pdf/1609.08144.pdf


‣ RNNs:  

‣ Two fancy variants: LSTM and GRU  
to address the vanishing gradient problem 

‣ Deep RNNs (stacking) 

‣ Residual connections 

‣ Two more concepts to cover: 

‣ beyond static word embeddings 

‣ gluing it all together: attention!
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Interim summary



 168

Overview

Motivation,  
Brief History, Overview

foundations

representations

beyond FFNNs

Back to the roots:  
Language Models

 Feedforward NNs 
(FFNNs)

What’s the input? 
Representations

Convolutional Neural 
Networks (CNNs)

Recurrent Neural 
Network (RNNs)

Advanced RNNs, 
Decoders

Contextualized 
Embeddings, Fine-tuning



Traditional (“static”) 
word embeddings

compress all contexts into a single vector



Contextualized  
word embeddings



‣ Problem:  

‣ It is a type-based representation: always the same vector 
for a word regardless of its context (e.g. ‘ducks’) 

‣ Polysemy is not handled  
 
 
 
 

‣ Solution: Contextualized embeddings 

‣ Learn a vector that depends on the context
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Representing a word as vector so far

ducksShe  sees
=

ducksShe



Language Models to 
the rescue!

Src: Wikipedia
Peters et al., NAACL 2018



‣ Neural LMs embed the left and right context of a word 

‣ We can use a bi-directional LM with the forward and the 
backward LSTM states 
 
 
 
 

‣ Key Idea: Learn word token vectors (not type!) using long 
contexts (not only context windows) 

‣ ELMO uses a “deep” model to get different encodings (or 
“views”) from stacked RNNs
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ELMo:  
Embeddings as Language Models



Embeddings from Language Models
( λ2* )
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BiLSTM

C

BiLSTM

C

BiLSTM

C

BiLSTM

C

BiLSTM

C

whoperson ducks out …on…

ELMo

BiLSTM BiLSTM BiLSTM BiLSTM BiLSTM

BiLSTM BiLSTM BiLSTM BiLSTM BiLSTM

= + +( λ1* ) ( λ3* )



‣ ELMo: every token is assigned a representation that is a 
function of the entire input sentence (L=#stacked layers) 
 
 

‣ This gives 2L+1 representations - Which to use? 

‣ Just the top layer (similar to TagLM; Peters et al., 2017) 

‣ Include all L+1 layers, average  

‣ All layers, weighted average (best) 
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ELMo - Details



‣ Recipe: For a given instance 

‣ Run biLM to get the representations for each word 

‣ Concatenate ELMo embeddings into task-specific 
model, e.g.,  

‣ as additional input to static word embeddings 

‣ as additional hidden representation 

‣ … many choices, best might depend on end task
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How to use ELMo for your task?



Results over 6 NLP benchmarks

0
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100

SQUAD SNLI SRL Coref NER SST-5

54.7

92.2

70.4

84.6
88.7

85.8

51.4

90.2

67.2

81.4

88.0

81.1

F1 F1 F1avg F1 accuracyaccuracy

Peters et al., NAACL 2018



‣ ELMo is deeper compared to an earlier model  
by Peters et al., 2017 ACL (TagLM) 

‣ It doesn’t require parallel data (as CoVe does) by  
McCann et al., 2017 NeurIPS 

‣ CoVe: use NMT as encoder (translation is meant to 
preserve meaning, so why not use it to provide context?) 

‣ It obtained a new SOTA on 6 benchmarks
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Is ELMo the first such model? No!



What’s in a 
representation?



‣ What do ELMo 
representations capture? 

‣ Word Sense 
Disambiguation (WSD) 

‣ Part-of-Speech tagging 
(POS) 

‣ Finding: Different layers 
encode different kinds of 
syntactic and semantic 
information
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Probing ELMo representations

0

25

50

75

100

WSD POS

96.8

69.0

97.3

67.4

first layer second layer

(Selected related work): Tenney et al., 2019 ACL; Liu et al., 2019 NAACL 
Belinkov & Glass, 2019 TAC

https://arxiv.org/abs/1905.05950
https://www.aclweb.org/anthology/N19-1112
https://transacl.org/ojs/index.php/tacl/article/view/1570


‣ A news corpus of 1B words: the 1-billion word language 
modeling benchmark (Chelba et al., 2014)  

‣ ELMo can compute representations for any task 

‣ In some cases, fine-tuning ELMo on domain-specific data 
leads to increased downstream performance
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On what was ELMo trained?

1B words train domain 
specific

train

Fine-tuning: train on large data, continue training on small data (reuse weights)
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Fine-tuning: One way of 
Transfer Learning

Model A Model B

Transfer Learning 

Knowledge gained  
to help solve  

a related problem



Language models learn 
transferable contextual 

representations



‣ unsupervised 

‣ contextual 

‣ deep 

‣ character-based 

‣ extremely versatile (new type of word representation) 
 

‣ Many follow-up words, most of which rely on the 
transformer model (Lecture 4), e.g., BERT
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To sum up: ELMo properties



‣ From Ruder et al.’s 2019 NAACL tutorial
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NLP Progress on NER

Performance on Named Entity Recognition (NER) on CoNLL-2003 (English) over time

https://docs.google.com/presentation/d/1fIhGikFPnb7G5kr58OvYC3GN4io7MznnM0aAgadvJfc/edit#slide=id.g5888218f39_16_23
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Overview

Motivation,  
Brief History, Overview

foundations

representations

beyond FFNNs

Back to the roots:  
Language Models

 Feedforward NNs 
(FFNNs)

What’s the input? 
Representations

Convolutional Neural 
Networks (CNNs)

Recurrent Neural 
Network (RNNs)

Advanced RNNs, 
Decoders

Attention? Attention!

Contextualized 
Embeddings, Fine-tuning



Attention? Attention!

Many thanks to Lilian Weng for an awesome tutorial (https://lilianweng.github.io/lil-log/
2018/06/24/attention-attention.html) and Graham Neubig’s NN for NLP class (http://

www.phontron.com/class/nn4nlp2019/)

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
http://www.phontron.com/class/nn4nlp2019/
http://www.phontron.com/class/nn4nlp2019/


Motivation: Encoder-decoder model

Der Film ist langweilig

Encoder

The

argmax

The

movie

argmax argmax

is

argmax

boring

movie is

argmax

</s>

boring

Decoder

sentence or 
“thought” vector

(Sutskever et al., 2014; Cho et al., 2014)



‣ Initialize decoder with encoder representation (Sutskever et 
al., 2014) 
 
 

‣ Transform (change dimensionality)  
 
 

‣ Input at every time step  
(Kalchbrenner & Blunsom, 2013)
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How to pass the sentence vector?

copy

transform

yt-1 yi+1



But: we’re cramming it all into..

Der Film ist langweilig

Encoder

The

argmax

The

movie

argmax argmax

is

argmax

boring

movie is

argmax

</s>

boring

a single $&!*ing 
vector!

Decoder



‣ The encoder compresses the sentence into a single fixed-
size vector. This representation is expected to be a good 
summary of the entire sentence. 

‣ Disadvantage: incapability of remembering longer 
sequences. 

‣ “You can’t cram the meaning of a of a whole %&!$ing 
sentence into a single $&!*ing vector!” — Ray Mooney
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Problem



‣ What if we could use several vectors, based on the length 
of the input sequence?  

‣ Idea: when we generate the next word in MT, perhaps we 
can learn to attend to the relevant source words
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Beyond a single static “crammed” vector

the cat is black

the cat is black

Encoder

Encoder

encoder hidden states 

h1
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h4
<latexit sha1_base64="+YLzsEr/4HtFuWfk3EuOEKujH9g=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWZqQZdFNy4r2Ae0Q8mkmTY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck+OHwuujeN8o8LG5tb2TnG3tLd/cHhUPj5p6yhRlLVoJCLV9YlmgkvWMtwI1o0VI6EvWMef3GV+Z8qU5pF8NLOYeSEZSR5wSoyVvH5IzNgP0vGgPseDcsWpOgvgdeLmpAI5moPyV38Y0SRk0lBBtO65Tmy8lCjDqWDzUj/RLCZ0QkasZ6kkIdNeugg9xxdWGeIgUvZJgxfq742UhFrPQt9OZiH1qpeJ/3m9xAQ3XsplnBgm6fJQkAhsIpw1gIdcMWrEzBJCFbdZMR0TRaixPZVsCe7ql9dJu1Z1r6q1h3qlcZvXUYQzOIdLcOEaGnAPTWgBhSd4hld4Q1P0gt7Rx3K0gPKdU/gD9PkDcZ6R4Q==</latexit>



‣ When decoding, perform a linear combination of the 
encoded input vectors, weighted by “attention weights”
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StSt-1

yt+

h1
<latexit sha1_base64="hFxO5UtyO5a/QEoP47g0JAPJpqM=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+4B2KJn0ThuayYxJplCGfocbF4q49WPc+Tdm2i609UDgcM693JMTJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0l/utMSrNY/loJgn6ER1IHnJGjZX8bkTNMAizYc+bkl6p7FbcGcgq8RakDAvUe6Wvbj9maYTSMEG17nhuYvyMKsOZwGmxm2pMKBvRAXYslTRC7Wez0FNybpU+CWNlnzRkpv7eyGik9SQK7GQeUi97ufif10lNeONnXCapQcnmh8JUEBOTvAHS5wqZERNLKFPcZiVsSBVlxvZUtCV4y19eJc1qxbusVB+uyrXbRR0FOIUzuAAPrqEG91CHBjB4gmd4hTdn7Lw4787HfHTNWeycwB84nz9tDJHe</latexit>

h2
<latexit sha1_base64="/BvkXpFuk0AFjRAcO9/abxcFgR0=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+4B2KJk004ZmMmNyp1CGfocbF4q49WPc+Tdm2i609UDgcM693JMTJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju9xvjbk2IlaPOEm4H9GBEqFgFK3kdyOKwyDMhr3qlPRKZbfizkBWibcgZVig3it9dfsxSyOukElqTMdzE/QzqlEwyafFbmp4QtmIDnjHUkUjbvxsFnpKzq3SJ2Gs7VNIZurvjYxGxkyiwE7mIc2yl4v/eZ0Uwxs/EypJkSs2PxSmkmBM8gZIX2jOUE4soUwLm5WwIdWUoe2paEvwlr+8SprVindZqT5clWu3izoKcApncAEeXEMN7qEODWDwBM/wCm/O2Hlx3p2P+eias9g5gT9wPn8AbpKR3w==</latexit>

h3
<latexit sha1_base64="jv9F9hQc7z2SNPpV1QfhwkTepGg=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsy0gi6LblxWsA9oh5JJM21okhmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS1lGiCG2RiEeqG2BNOZO0ZZjhtBsrikXAaSeY3GV+Z0qVZpF8NLOY+gKPJAsZwcZKfl9gMw7CdDyoz9GgXHGr7gJonXg5qUCO5qD81R9GJBFUGsKx1j3PjY2fYmUY4XRe6ieaxphM8Ij2LJVYUO2ni9BzdGGVIQojZZ80aKH+3kix0HomAjuZhdSrXib+5/USE974KZNxYqgky0NhwpGJUNYAGjJFieEzSzBRzGZFZIwVJsb2VLIleKtfXiftWtWrV2sPV5XGbV5HEc7gHC7Bg2towD00oQUEnuAZXuHNmTovzrvzsRwtOPnOKfyB8/kDcBiR4A==</latexit>

h4
<latexit sha1_base64="+YLzsEr/4HtFuWfk3EuOEKujH9g=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWZqQZdFNy4r2Ae0Q8mkmTY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck+OHwuujeN8o8LG5tb2TnG3tLd/cHhUPj5p6yhRlLVoJCLV9YlmgkvWMtwI1o0VI6EvWMef3GV+Z8qU5pF8NLOYeSEZSR5wSoyVvH5IzNgP0vGgPseDcsWpOgvgdeLmpAI5moPyV38Y0SRk0lBBtO65Tmy8lCjDqWDzUj/RLCZ0QkasZ6kkIdNeugg9xxdWGeIgUvZJgxfq742UhFrPQt9OZiH1qpeJ/3m9xAQ3XsplnBgm6fJQkAhsIpw1gIdcMWrEzBJCFbdZMR0TRaixPZVsCe7ql9dJu1Z1r6q1h3qlcZvXUYQzOIdLcOEaGnAPTWgBhSd4hld4Q1P0gt7Rx3K0gPKdU/gD9PkDcZ6R4Q==</latexit>

query vector

key vectors

Attention: Core Idea

(Bahdanau et al., 2015)

ct
context vector



1. For each query-key pair, calculate an attention score (ai) 

2. Get an attention distribution  
via softmax normalization (𝜶i)
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St

yt

h1
<latexit sha1_base64="hFxO5UtyO5a/QEoP47g0JAPJpqM=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+4B2KJn0ThuayYxJplCGfocbF4q49WPc+Tdm2i609UDgcM693JMTJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0l/utMSrNY/loJgn6ER1IHnJGjZX8bkTNMAizYc+bkl6p7FbcGcgq8RakDAvUe6Wvbj9maYTSMEG17nhuYvyMKsOZwGmxm2pMKBvRAXYslTRC7Wez0FNybpU+CWNlnzRkpv7eyGik9SQK7GQeUi97ufif10lNeONnXCapQcnmh8JUEBOTvAHS5wqZERNLKFPcZiVsSBVlxvZUtCV4y19eJc1qxbusVB+uyrXbRR0FOIUzuAAPrqEG91CHBjB4gmd4hTdn7Lw4787HfHTNWeycwB84nz9tDJHe</latexit>

h2
<latexit sha1_base64="/BvkXpFuk0AFjRAcO9/abxcFgR0=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+4B2KJk004ZmMmNyp1CGfocbF4q49WPc+Tdm2i609UDgcM693JMTJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju9xvjbk2IlaPOEm4H9GBEqFgFK3kdyOKwyDMhr3qlPRKZbfizkBWibcgZVig3it9dfsxSyOukElqTMdzE/QzqlEwyafFbmp4QtmIDnjHUkUjbvxsFnpKzq3SJ2Gs7VNIZurvjYxGxkyiwE7mIc2yl4v/eZ0Uwxs/EypJkSs2PxSmkmBM8gZIX2jOUE4soUwLm5WwIdWUoe2paEvwlr+8SprVindZqT5clWu3izoKcApncAEeXEMN7qEODWDwBM/wCm/O2Hlx3p2P+eias9g5gT9wPn8AbpKR3w==</latexit>

h3
<latexit sha1_base64="jv9F9hQc7z2SNPpV1QfhwkTepGg=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsy0gi6LblxWsA9oh5JJM21okhmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS1lGiCG2RiEeqG2BNOZO0ZZjhtBsrikXAaSeY3GV+Z0qVZpF8NLOY+gKPJAsZwcZKfl9gMw7CdDyoz9GgXHGr7gJonXg5qUCO5qD81R9GJBFUGsKx1j3PjY2fYmUY4XRe6ieaxphM8Ij2LJVYUO2ni9BzdGGVIQojZZ80aKH+3kix0HomAjuZhdSrXib+5/USE974KZNxYqgky0NhwpGJUNYAGjJFieEzSzBRzGZFZIwVJsb2VLIleKtfXiftWtWrV2sPV5XGbV5HEc7gHC7Bg2towD00oQUEnuAZXuHNmTovzrvzsRwtOPnOKfyB8/kDcBiR4A==</latexit>

h4
<latexit sha1_base64="+YLzsEr/4HtFuWfk3EuOEKujH9g=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWZqQZdFNy4r2Ae0Q8mkmTY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck+OHwuujeN8o8LG5tb2TnG3tLd/cHhUPj5p6yhRlLVoJCLV9YlmgkvWMtwI1o0VI6EvWMef3GV+Z8qU5pF8NLOYeSEZSR5wSoyVvH5IzNgP0vGgPseDcsWpOgvgdeLmpAI5moPyV38Y0SRk0lBBtO65Tmy8lCjDqWDzUj/RLCZ0QkasZ6kkIdNeugg9xxdWGeIgUvZJgxfq742UhFrPQt9OZiH1qpeJ/3m9xAQ3XsplnBgm6fJQkAhsIpw1gIdcMWrEzBJCFbdZMR0TRaixPZVsCe7ql9dJu1Z1r6q1h3qlcZvXUYQzOIdLcOEaGnAPTWgBhSd4hld4Q1P0gt7Rx3K0gPKdU/gD9PkDcZ6R4Q==</latexit>

Calculating attention (1/2):  
Attention weights 𝜶

𝛼1=.79 𝛼2=.1 𝛼3=.05 𝛼4=-.03

key vectors

a(q, k)

a1=2.1 a2=0.1 a3=-0.5 a4=-1.0

a(q, k)a(q, k)a(q, k)

softmax

query vector

(Bahdanau et al., 2015)



3. Combine together value vectors (can be the encoder states, 
like the key vectors) by taking the weighted sum to get c

 195

h1
<latexit sha1_base64="hFxO5UtyO5a/QEoP47g0JAPJpqM=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+4B2KJn0ThuayYxJplCGfocbF4q49WPc+Tdm2i609UDgcM693JMTJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0l/utMSrNY/loJgn6ER1IHnJGjZX8bkTNMAizYc+bkl6p7FbcGcgq8RakDAvUe6Wvbj9maYTSMEG17nhuYvyMKsOZwGmxm2pMKBvRAXYslTRC7Wez0FNybpU+CWNlnzRkpv7eyGik9SQK7GQeUi97ufif10lNeONnXCapQcnmh8JUEBOTvAHS5wqZERNLKFPcZiVsSBVlxvZUtCV4y19eJc1qxbusVB+uyrXbRR0FOIUzuAAPrqEG91CHBjB4gmd4hTdn7Lw4787HfHTNWeycwB84nz9tDJHe</latexit>

h2
<latexit sha1_base64="/BvkXpFuk0AFjRAcO9/abxcFgR0=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+4B2KJk004ZmMmNyp1CGfocbF4q49WPc+Tdm2i609UDgcM693JMTJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju9xvjbk2IlaPOEm4H9GBEqFgFK3kdyOKwyDMhr3qlPRKZbfizkBWibcgZVig3it9dfsxSyOukElqTMdzE/QzqlEwyafFbmp4QtmIDnjHUkUjbvxsFnpKzq3SJ2Gs7VNIZurvjYxGxkyiwE7mIc2yl4v/eZ0Uwxs/EypJkSs2PxSmkmBM8gZIX2jOUE4soUwLm5WwIdWUoe2paEvwlr+8SprVindZqT5clWu3izoKcApncAEeXEMN7qEODWDwBM/wCm/O2Hlx3p2P+eias9g5gT9wPn8AbpKR3w==</latexit>

h3
<latexit sha1_base64="jv9F9hQc7z2SNPpV1QfhwkTepGg=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsy0gi6LblxWsA9oh5JJM21okhmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS1lGiCG2RiEeqG2BNOZO0ZZjhtBsrikXAaSeY3GV+Z0qVZpF8NLOY+gKPJAsZwcZKfl9gMw7CdDyoz9GgXHGr7gJonXg5qUCO5qD81R9GJBFUGsKx1j3PjY2fYmUY4XRe6ieaxphM8Ij2LJVYUO2ni9BzdGGVIQojZZ80aKH+3kix0HomAjuZhdSrXib+5/USE974KZNxYqgky0NhwpGJUNYAGjJFieEzSzBRzGZFZIwVJsb2VLIleKtfXiftWtWrV2sPV5XGbV5HEc7gHC7Bg2towD00oQUEnuAZXuHNmTovzrvzsRwtOPnOKfyB8/kDcBiR4A==</latexit>

h4
<latexit sha1_base64="+YLzsEr/4HtFuWfk3EuOEKujH9g=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWZqQZdFNy4r2Ae0Q8mkmTY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck+OHwuujeN8o8LG5tb2TnG3tLd/cHhUPj5p6yhRlLVoJCLV9YlmgkvWMtwI1o0VI6EvWMef3GV+Z8qU5pF8NLOYeSEZSR5wSoyVvH5IzNgP0vGgPseDcsWpOgvgdeLmpAI5moPyV38Y0SRk0lBBtO65Tmy8lCjDqWDzUj/RLCZ0QkasZ6kkIdNeugg9xxdWGeIgUvZJgxfq742UhFrPQt9OZiH1qpeJ/3m9xAQ3XsplnBgm6fJQkAhsIpw1gIdcMWrEzBJCFbdZMR0TRaixPZVsCe7ql9dJu1Z1r6q1h3qlcZvXUYQzOIdLcOEaGnAPTWgBhSd4hld4Q1P0gt7Rx3K0gPKdU/gD9PkDcZ6R4Q==</latexit>

Calculating attention (1/2):  
Attention weights 𝜶

𝛼1=.79 𝛼2=.1 𝛼3=.05 𝛼4=-.03

Value vectors

weight

+ ct

ct =
nX

i=1

↵t,ihi

<latexit sha1_base64="mssqSeNS0sTKB8gVqfu9QGdNRg4=">AAACHXicbVDLSgMxFM34rPVVdekmWAQXUmZqQTeFohuXFewDOnXIpJk2NJMZkjtCGeZH3Pgrblwo4sKN+DemD0FbDwQO55xL7j1+LLgG2/6ylpZXVtfWcxv5za3tnd3C3n5TR4mirEEjEam2TzQTXLIGcBCsHStGQl+wlj+8Gvute6Y0j+QtjGLWDUlf8oBTAkbyChU3JDDwg5R6kOEqdnUSeimvOtmdxC4R8YB4KZzy7Cc38HjmFYp2yZ4ALxJnRopohrpX+HB7EU1CJoEKonXHsWPopkQBp4JleTfRLCZ0SPqsY6gkIdPddHJdho+N0sNBpMyTgCfq74mUhFqPQt8kxzvqeW8s/ud1EgguuimXcQJM0ulHQSIwRHhcFe5xxSiIkSGEKm52xXRAFKFgCs2bEpz5kxdJs1xyzkrlm0qxdjmrI4cO0RE6QQ46RzV0jeqogSh6QE/oBb1aj9az9Wa9T6NL1mzmAP2B9fkNUfiisw==</latexit>

(Bahdanau et al., 2015)
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+

ct =
nX

i=1

↵t,ihi

<latexit sha1_base64="mssqSeNS0sTKB8gVqfu9QGdNRg4=">AAACHXicbVDLSgMxFM34rPVVdekmWAQXUmZqQTeFohuXFewDOnXIpJk2NJMZkjtCGeZH3Pgrblwo4sKN+DemD0FbDwQO55xL7j1+LLgG2/6ylpZXVtfWcxv5za3tnd3C3n5TR4mirEEjEam2TzQTXLIGcBCsHStGQl+wlj+8Gvute6Y0j+QtjGLWDUlf8oBTAkbyChU3JDDwg5R6kOEqdnUSeimvOtmdxC4R8YB4KZzy7Cc38HjmFYp2yZ4ALxJnRopohrpX+HB7EU1CJoEKonXHsWPopkQBp4JleTfRLCZ0SPqsY6gkIdPddHJdho+N0sNBpMyTgCfq74mUhFqPQt8kxzvqeW8s/ud1EgguuimXcQJM0ulHQSIwRHhcFe5xxSiIkSGEKm52xXRAFKFgCs2bEpz5kxdJs1xyzkrlm0qxdjmrI4cO0RE6QQ46RzV0jeqogSh6QE/oBb1aj9az9Wa9T6NL1mzmAP2B9fkNUfiisw==</latexit>

h1
<latexit sha1_base64="hFxO5UtyO5a/QEoP47g0JAPJpqM=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+4B2KJn0ThuayYxJplCGfocbF4q49WPc+Tdm2i609UDgcM693JMTJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0l/utMSrNY/loJgn6ER1IHnJGjZX8bkTNMAizYc+bkl6p7FbcGcgq8RakDAvUe6Wvbj9maYTSMEG17nhuYvyMKsOZwGmxm2pMKBvRAXYslTRC7Wez0FNybpU+CWNlnzRkpv7eyGik9SQK7GQeUi97ufif10lNeONnXCapQcnmh8JUEBOTvAHS5wqZERNLKFPcZiVsSBVlxvZUtCV4y19eJc1qxbusVB+uyrXbRR0FOIUzuAAPrqEG91CHBjB4gmd4hTdn7Lw4787HfHTNWeycwB84nz9tDJHe</latexit>

h2
<latexit sha1_base64="/BvkXpFuk0AFjRAcO9/abxcFgR0=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+4B2KJk004ZmMmNyp1CGfocbF4q49WPc+Tdm2i609UDgcM693JMTJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju9xvjbk2IlaPOEm4H9GBEqFgFK3kdyOKwyDMhr3qlPRKZbfizkBWibcgZVig3it9dfsxSyOukElqTMdzE/QzqlEwyafFbmp4QtmIDnjHUkUjbvxsFnpKzq3SJ2Gs7VNIZurvjYxGxkyiwE7mIc2yl4v/eZ0Uwxs/EypJkSs2PxSmkmBM8gZIX2jOUE4soUwLm5WwIdWUoe2paEvwlr+8SprVindZqT5clWu3izoKcApncAEeXEMN7qEODWDwBM/wCm/O2Hlx3p2P+eias9g5gT9wPn8AbpKR3w==</latexit>

h3
<latexit sha1_base64="jv9F9hQc7z2SNPpV1QfhwkTepGg=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsy0gi6LblxWsA9oh5JJM21okhmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS1lGiCG2RiEeqG2BNOZO0ZZjhtBsrikXAaSeY3GV+Z0qVZpF8NLOY+gKPJAsZwcZKfl9gMw7CdDyoz9GgXHGr7gJonXg5qUCO5qD81R9GJBFUGsKx1j3PjY2fYmUY4XRe6ieaxphM8Ij2LJVYUO2ni9BzdGGVIQojZZ80aKH+3kix0HomAjuZhdSrXib+5/USE974KZNxYqgky0NhwpGJUNYAGjJFieEzSzBRzGZFZIwVJsb2VLIleKtfXiftWtWrV2sPV5XGbV5HEc7gHC7Bg2towD00oQUEnuAZXuHNmTovzrvzsRwtOPnOKfyB8/kDcBiR4A==</latexit>

h4
<latexit sha1_base64="+YLzsEr/4HtFuWfk3EuOEKujH9g=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWZqQZdFNy4r2Ae0Q8mkmTY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck+OHwuujeN8o8LG5tb2TnG3tLd/cHhUPj5p6yhRlLVoJCLV9YlmgkvWMtwI1o0VI6EvWMef3GV+Z8qU5pF8NLOYeSEZSR5wSoyVvH5IzNgP0vGgPseDcsWpOgvgdeLmpAI5moPyV38Y0SRk0lBBtO65Tmy8lCjDqWDzUj/RLCZ0QkasZ6kkIdNeugg9xxdWGeIgUvZJgxfq742UhFrPQt9OZiH1qpeJ/3m9xAQ3XsplnBgm6fJQkAhsIpw1gIdcMWrEzBJCFbdZMR0TRaixPZVsCe7ql9dJu1Z1r6q1h3qlcZvXUYQzOIdLcOEaGnAPTWgBhSd4hld4Q1P0gt7Rx3K0gPKdU/gD9PkDcZ6R4Q==</latexit>

Summary: Additive attention 
(Bahdanau, 2015)

𝛼1=.79 𝛼2=.1 𝛼3=.05 𝛼4=-.03

1.For each query-key 
pair, calculate weight ai 

2.Normalize via softmax 

3.Combine together 
value vectors via 
weighted sum to get ct 

4.Use in your model in 
any part you like

ct =
nX

i=1

↵t,ihi

<latexit sha1_base64="mssqSeNS0sTKB8gVqfu9QGdNRg4=">AAACHXicbVDLSgMxFM34rPVVdekmWAQXUmZqQTeFohuXFewDOnXIpJk2NJMZkjtCGeZH3Pgrblwo4sKN+DemD0FbDwQO55xL7j1+LLgG2/6ylpZXVtfWcxv5za3tnd3C3n5TR4mirEEjEam2TzQTXLIGcBCsHStGQl+wlj+8Gvute6Y0j+QtjGLWDUlf8oBTAkbyChU3JDDwg5R6kOEqdnUSeimvOtmdxC4R8YB4KZzy7Cc38HjmFYp2yZ4ALxJnRopohrpX+HB7EU1CJoEKonXHsWPopkQBp4JleTfRLCZ0SPqsY6gkIdPddHJdho+N0sNBpMyTgCfq74mUhFqPQt8kxzvqeW8s/ud1EgguuimXcQJM0ulHQSIwRHhcFe5xxSiIkSGEKm52xXRAFKFgCs2bEpz5kxdJs1xyzkrlm0qxdjmrI4cO0RE6QQ46RzV0jeqogSh6QE/oBb1aj9az9Wa9T6NL1mzmAP2B9fkNUfiisw==</latexit>

FFNN!
(Bahdanau, 2015)

a(q, k) = vT
a tanh(Wa[q; k])



 197

Alignment matrix (Bahdanau, 2015)

https://arxiv.org/pdf/1409.0473.pdf

https://arxiv.org/pdf/1409.0473.pdf
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Enc-dec performance deteriorates rapidly 
as input sentence length increases

https://arxiv.org/pdf/1409.0473.pdf

Cho et al., (2014); Bahdanau et al. (2015) 

with attention

https://arxiv.org/pdf/1409.0473.pdf


Different forms of 
attention are available 

(e.g., Luong et al., 2015)



‣ In Bahdanau et al., (2015): the alignment score function is 
a single FFNN (MLP) with a single hidden layer: 

‣   

‣ both va and Wa are trained with the network
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Alignment Functions: What’s         ?

a(q, k) = vT
a tanh(Wa[q; k])

a(q, k)



‣ Dot product (Luong et al., 2015) 

‣   

‣ requires same size; but has no parameters! 

‣ Bilinear (Luong et al., 2015) 

‣   

‣ Scaled dot product (Vaswani et al., 2017) 

‣   

‣ fixes problem of dot product that scale of dot product 
increases as dimensions get larger
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More alignment functions

a(q, k) = qTk

a(q, k) = qTWk

a(q, k) =
qTk
|k |

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html


A little more on 
attention
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Self-attention

‣ Attend to sentence itself (Cheng, Dong, Lapata, 2016)

https://arxiv.org/pdf/1601.06733.pdf

https://arxiv.org/pdf/1601.06733.pdf


What to attend to? 
Some more examples



‣ Salient parts of the image (e.g., Xu et at., 2015)
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Image caption generation



‣ E.g. Rei et al., 2016
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Character-level attention



Attention is everywhere 
[and all you need?!] -> 

More on Monday :-)



To summarize
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To sum up…

Motivation,  
Brief History, Overview

foundations

representations

beyond FFNNs

Back to the roots:  
Language Models

 Feedforward NNs 
(FFNNs)

What’s the input? 
Representations

Convolutional Neural 
Networks (CNNs)

Recurrent Neural 
Network (RNNs)

Advanced RNNs, 
Decoders

Attention? Attention!

Contextualized 
Embeddings, Fine-tuning

n-grams, limitations FFNN LM

n-hot & static word embeddings

ELMo

variable-size input 
& “soft” ngrams

vanilla RNNs GRU, LSTM  
 

MLP, CRF
Basis for Transformer



https://nlp.itu.dk/

Questions?
Thanks! 

bplank.github.io

Barbara Plank 
@barbara_plank  

ITU, Denmark

Research is supported by:

Follow us:

Thanks to all the  
organizers & sponsors of:

http://bplank.github.io


‣ Jurasky & Martin textbook, chapter 3 (n-gram LMs), chapter 
7 (neural LMs) 

‣ Graham Neubig (2018): Language Models 4: Recurrent 
Neural Network Language Models 

‣ Yoav Goldberg (2015): A Primer on Neural Network 
Models for Natural Language Processing  

‣ Chris Manning & Abigail See (2018) Stanford class
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