
Encoder-Decoder
Models
Barbara Plank

ITU, Copenhagen, Denmark

 
September 21, 2019,

#AthNLP2019 Athens, Greece

It is all about sequences

[It, is, all, about, sequences]

[s, e, q, u, e, n, c, e, s]

https://blog.algorithmia.com/wp-content/uploads/2018/03/word-image-11.png

https://towardsdatascience.com/beginners-guide-to-speech-

!2

Motivation
Understanding supply and demand is easy. What is difficult to
comprehend is what makes people like a particular stock and
dislike another stock. This comes down to figuring out what
news is positive for a company and what news is negative.
There are many answers to this problem and just about any

investor you ask has their own ideas and strategies.
Read more: Stocks Basics: What Causes Stock Prices To

Change? | Investopedia http://www.investopedia.com/university/
stocks/stocks4.asp#ixzz47UcBJeMH
Follow us: Investopedia on Facebook

The only other Republican governor in a
competitive re-election race this year,

according to Cook Political Report’s
ratings, is Pat McCrory of North Carolina,

who hasn’t made a presidential
endorsement. However, there are 11

Republican senators and 34 Republican
members of the House who face

competitive races, according to Cook. The
only one to have endorsed Trump is Tom

Reed, the incumbent from New York’s
23rd Congressional District, a Republican-
leaning swing district that covers much of

Understanding supply and demand is easy. What is
difficult to comprehend is what makes people like a

particular stock and dislike another stock. This
comes down to figuring out what news is positive
for a company and what news is negative. There
are many answers to this problem and just about

any investor you ask has their own ideas and
strategies.

Read more: Stocks Basics: What Causes Stock
Prices To Change? | Investopedia http://
www.investopedia.com/university/stocks/

Egg futures have surged by as much as one-
third since March, the sort of move that
would be justified if investors believed

China’s chicken flocks were headed for an
unfortunate fate.

But the market’s usual participants say the
flocks are fine. In fact, the actual price of

eggs in the country’s markets has fallen from
a year ago, according to government

statistics.

third since March, the sort of move that
would be justified if investors believed

China’s chicken flocks were headed for an
unfortunate fate.

But the market’s usual participants say the
flocks are fine. In fact, the actual price of

eggs in the country’s markets has fallen from
a year ago, according to government

statistics.

Understanding supply and demand is easy. What is
difficult to comprehend is what makes people like a
particular stock and dislike another stock. This comes
down to figuring out what news is positive for a company
and what news is negative. There are many answers to
this problem and just about any investor you ask has
their own ideas and strategies.
Read more: Stocks Basics: What Causes Stock Prices To
Change? | Investopedia http://www.investopedia.com/
university/stocks/stocks4.asp#ixzz47UcBJeMH
Follow us: Investopedia on Facebook

 2

(most?!) interesting data is  

 

sequential in nature

Inspired by slides from S.Gouws & D. Hovy.

Challenge: Language is ambiguous

Illustration drawn by Dirk Hovy.

Challenge: Language is productive

https://twitter.com/seattlekim/status/1106687539279101954

‣ In some applications, we want to condition  
on sequential data to make a prediction  
 
 
 

‣ In other applications, we want to generate
sequential data

 5

Sequence Modeling Tasks

Inspired by slides from Chris Dyer & Dirk Hovy.

generation
problems: how to

decode a sequence?

condition problems:
how to represent a

sequence?

I like Vince Gilligan .

positiveSENTIMENT ANALYSIS

FemaleAUTHOR ATTRIBUTES 30+

PRON VERB PNAME PNAME PUNCT

nsubj obj

punct
name

A step back…  
How did the field evolve?

‣ Early approaches in NLP: symbolic & rule-based

‣ In the late 80s: development of annotated corpora (especially
the well-known Penn Treebank Wall Street Journal) 
 
 
 
 

‣ And corresponding emergence of statistical approaches

‣ Common evaluation corpora and measures pushed the field

 7

NLP ♥ Machine Learning

80s🗓

 8

First big jump: statistical learning

approx. 1980s

Symbolic  
Processing

Statistical 
NLP

Deep Learning  
for NLP

Epoch 1 Epoch 2

from  
hand-crafted
rules to ML

x: the dog barks
if prev_w = DET and ..  

tag=NOUN

x: 1 0 0 1 0

w_i=dog w_i-1=the

..

e.g. Brill’s  
 rule-based  

tagger (1992)

e.g. Collin’s  
structured  

perceptron (2002)

classic sparse ’n-hot’ encoding

The emergence of  
deep learning (in NLP)

 10

In Speech Recognition

2010 🗓

RNNs

(Source: The Economist)

‣ Computer Vision: success of Convolutional Neural
Networks

‣ Speech Recognition: Recurrent Neural Networks

 11

In Computer Vision

2012 🗓(src: slide by Fei-Fei Li)

 12

Papers: Deep learning in NLP

0

23

45

68

90

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

“neural|deep learning”*

*(incl. variants of RNN/CNNs and excl. deep parsing)

 Titles of papers in ACL anthology (from 2004)

“2015 seems like the year when the full force of the
tsunami hit the major NLP conferences”

—Chris Manning (2015)

NLP ♥ Deep Learning

 13
approx. 1980s

Symbolic  
Processing

Statistical 
NLP

Deep Learning  
for NLP

2015

Epoch 1 Epoch 2 Epoch 3

dog: 0.2 0.1 0.3 0.10.2

barks: 0.1 0.3 0.1 0.20.3

dense representations 
(embeddings)  

from  
hand-crafted
rules to ML

representation
learning

 14

Overview

Motivation,  
Brief History, Overview

foundations

representations

beyond FFNNs

Back to the roots:  
Language Models

 Feedforward NNs
(FFNNs)

What’s the input?
Representations

Convolutional Neural
Networks (CNNs)

Recurrent Neural
Network (RNNs)

Advanced RNNs,
Decoders

Attention? Attention!

Contextualized
Embeddings, Fine-tuning

‣www.mentimeter.com  
Room: (see code)

 15

Predicting the next word:  
A Simple (?) Exercise

* (title inspired by Graham Neubig)

http://www.mentimeter.com

 16

More examples

https://books.google.com/

‣ Recurrent Neural ___

‣… is perhaps the best ___

 17

Why care about LMs?

https://twitter.com/verena_rieser/status/1174694748310953984

https://twitter.com/verena_rieser/status/1174694748310953984

So let’s look deeper at LMs:
from traditional LMs to

contextualized embeddings

‣ A computational model that can be used to either of the
following two tasks is called a Language Model (LM): 

‣ to compute the probability of a text*  
 

‣ to compute the probability of the next word  
 

 19

What is a Language Model (LM)?

* (can be a text, sentence, phrase,…)

P(today is a great day) = ??

P(day | today is a great) = ??

Why?  
Example Use Cases

 21

Speech Recognition

P(where is the nearest beach) > P(where is the nearest breach)

http://www.personal.psu.edu/ejp10/blogs/tlt/2011/09/understanding-speech-recogniti.html

http://www.personal.psu.edu/ejp10/blogs/tlt/2011/09/understanding-speech-recogniti.html

 22

Spelling Correction

http://www.personal.psu.edu/ejp10/blogs/tlt/2011/09/understanding-speech-recogniti.html

 23

You probably use a LM every day…

http://www.personal.psu.edu/ejp10/blogs/tlt/2011/09/understanding-speech-recogniti.html

 24

You probably use a LM every day…

http://www.personal.psu.edu/ejp10/blogs/tlt/2011/09/understanding-speech-recogniti.html

‣ Given a sequence of words:

‣ LM models the probability:

‣ Without loss of generality (Chain Rule):

 25

A Language Model - Formally

P(w1, …, wd)

(w1, …, wd)

P(w1, …, wd) = P(w1)P(w2 |w1)P(w3 |w1, w2)…

= P(w1)
d

∏
i=2

P(wi |w1, …, wi−1)

w1 w2 w3 w4 … wd

P(Athens|an awesome summer school this year is in)

history

‣ A common assumption in sequence modeling is to make
the Markov assumption: 
 
 

 26

Markov assumption

Adapted from Chris Dyer

P(x1, . . . , xd) =
d

∏
i=1

P(xi |x1, . . . , xi−1) ≈
d

∏
i=1

P(xi |xi−(n−1), . . . , xi−1)

Markov: forget “distant” past
Valid for language? No… 

Is it practical? Often!

n-th order Markov assumption:
history of n-1 words

‣ (Pre-deep learning) era: Learn an n-gram Language Model

‣ n-gram: a chunk of consecutive words

‣ n=2 (bigram): “to buy”, “buy a”, “a house”…

‣ n=3 (trigram): “to buy a”, “buy a house”,…

‣ Key method: collect statistics of n-grams from a corpus to
estimate the parameters of the model (maximum likelihood)

 27

How to learn a LM?

‣ n=1, 1st order Markov assumption, history (n-1): 0

 28

Unigram LM (1st order)

P(started) unigram LM

P(w1, …, wd) = P(w1)P(w2)P(w3)…

=
d

∏
i=1

P(wi)

w1 w2 w3 w4 … wd

0
1

network cat beerweather city water

P(w)

‣ n=2, 2nd order Markov assumption, history (n-1): 1

 29

 Bigram Language Model

P(started |has) bigram LM

P(w1, …, wd) = P(w1)P(w2 |w1)P(w3 |w2)…

= P(w1)
d

∏
i=2

P(wi |wi−1)

w1 w2 w3 w4 … wd

‣ A bigram model conditions on the previous word (n=2; or:
a window of 2 words) 
 
 

‣ A trigram model uses a history of 2 words (n=3, history 2) 
 
 
 

‣ E.g. a 5-gram LM

 30

Higher-order LMs

P(xi |xi−1)

P(xi |xi−2, xi−1)

 31

Sparsity problems with n-gram LMs

P(w | its water is so) =
C(its water is so w)
C(its water is so)

See for more details chapter 3 of Jurafsky & Martin. Adapted from Abigail See

Sparsity problem 2: If “its water is so”
never occurred: prob for any w is is 0.

Sparsity problem 1: If “its water is so
w” never occurred in the corpus: prob

for w is 0!

What can we do? Smoothing  
(add small count to every w)

What can we do? Backoff  
(condition on lower-level n-grams)

In general: Increasing n-gram size makes sparsity problem worse.

C=count()

http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf

 32

Further issues with n-gram LMs

Adapted from Graham Neubig

‣ What about similar words?

‣ she bought a bicycle

‣ she purchased a bicycle  

‣ Long-distance dependencies?

‣ for programming she yesterday
purchased her own brand new
laptop

‣ for running she yesterday purchased
her brand new sportswatch

cannot share strength
among similar words

cannot handle long-
distance dependencies

Generating text from
a LM

‣ We can sample incrementally from a Language Model,
one word at a time

 34

Sample from a unigram LM

0
1

network cat beer weather city water sits

P(w)

the cat sits

‣ We can sample incrementally from a Language Model,
one word at a time

 35

Sample from a unigram LM

0
1

network cat beer weather city water sits

P(w)

cat sits the

word salad? sequences / sequential data!

‣ No more Markov assumptions

‣ Great fit for

‣ Arbitrary length input

 36

Outlook: Why RNNs are so great for
Language

the cat sits

sequences / sequential data

the cat sits there

the sleepy cat sits there

the sleepy cat which chased the dog sits

‣ Language model task:

‣ input: sequence of words:

‣ output: probability of next word  

‣ An Early (deep learning era) solution: a window-based n-
gram neural language model (Bengio et al., 2003)

How to learn a neural LM?

(w1, …, wd)

P(wt+1 |wt, …, w2, w1)

feed-forward neural network

 38

Window-based neural LM via FFNN

As the clock rang the students opened

discard
fixed window of n words

the

predict!
predict!

http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf

 39

Overview

Motivation,  
Brief History, Overview

foundations

Back to the roots:  
Language Models

 Feedforward NNs
(FFNNs)

‣ After this recap you should:

‣ connect the different views on FFNNs

‣ refresh ourselves on how to represent input in NLP

 40

Feedforward Neural Network (FFNN)

 41

Neural Network

w

From biological to artificial
neuron

x Y
McCulloch & Pitt (1943)

PERCEPTRON: 
LINEAR

CLASSIFIER

 43

A single neuron

z = σ(x1w1 + x2w2 + x3w3 + x4w4 + b)
= σ(x ⋅ w + b) with x, w ∈ ℝ4

x1

x2

x3

x4

w1

w2
w3

w4

z

(bias node omitted in visualization)

 44

Multiple neurons

z1 = σ(x ⋅ w1 + b1)
z2 = σ(x ⋅ w2 + b2)

x1

x2

x3

x4

w11

w21

w31

w41

z1

z2

w12

w22
w32
w42

fθ : ℝ4 → ℝ2

 45

FFNN: abstract & functional view

“vanilla” Neural Network

̂y = softmax(f2(f1(x)))
‣ Each layer is a

function, acts on the
output of the layer
below (input)

‣ Final output: cascade
of functions

‣ Given the true
output y, we
compute the error Er

error = loss(y, ̂y)
‣ Using the chain rule,

we can compute the
derivative (gradient)
of the Error wrt any
of the intermediate
layer weights
(Lecture 1)

f2

f1

 46

FFNN: Graphical view

x
<latexit sha1_base64="IS0GhkO40ydFyu/g3xHsuJFF+Ho=">AAACm3icbZHdatswFMdl76vzvtLuZjAGYiHQbSXYSaC76VbWi5Wxi3YsTSHKjCzLiagsu9Lxmsz4afYGfYne96bsbaY4HenHDgh++p//kY6OolwKA77/x3Hv3L13/8HKQ+/R4ydPnzVW1w5MVmjG+yyTmT6MqOFSKN4HAZIf5prTNJJ8EB3tzPODn1wbkanvMMv5KKVjJRLBKFgpbJy2SEphEkXlt+pH7LV+4S1MjBindH0aBm9PwgC/w9OwY6lTU9dSt6aepZ6l6A0hXgsvCxcnJuW0IizO4N92UNVmTI4LGhPgUyhPBExwtfRvLL1EqCud9bylKWw0/bZfB74NwSU0P555W/nvC28vbJyTOGNFyhUwSY0ZBn4Oo5JqEEzyyiOF4TllR3TMhxYVTbkZlfVsK9yySoyTTNulANfq1YqSpsbM0sg65x2am7m5+L/csIDk/agUKi+AK7a4KCkkhgzPPwrHQnMGcmaBMi1sr5hNqKYM7Hd6dgjBzSffhoNOO+i2O/t+c/sTWsQKeoleo3UUoE20jXbRHuoj5rxwPjifnV33lbvjfnG/Lqyuc1nzHF0Lt/8XLErK+g==</latexit>

h1
<latexit sha1_base64="joq1NtUf7702dBvvaxZX4ikFWYM=">AAACnXicbZHdbtMwFMedbLAtfKyAtAt2gcVUaXyoStpKcDOpGkIChNCG6DqpLpHjOK01x8nsE9YuyiNxxyPwBNxxw7Pgpps6No5k6ef/+R/7+DjKpTDg+78dd2X11u219Q3vzt179zcbDx4emazQjPdZJjN9HFHDpVC8DwIkP841p2kk+SA6eTPPD75xbUSmvsAs56OUjpVIBKNgpbDxo0lSCpMoKj9XX2OveY73MDFinNLdaRg8PwsD/AJPw7aldk0dS52aupa6lqJnhHhNvCxcnJiU04qwOIPL7aCqzZicFjQmwKdQngmY4Grpf7n0EqGudNb1LjOTMKjCxo7f8uvANyG4gJ3e1uEf8X3/50HY+EXijBUpV8AkNWYY+DmMSqpBMMkrjxSG55Sd0DEfWlQ05WZU1tOtcNMqMU4ybZcCXKtXK0qaGjNLI+uc92iu5+bi/3LDApLXo1KovACu2OKipJAYMjz/KhwLzRnImQXKtLC9YjahmjKwH+rZIQTXn3wTjtqtoNNqH9pp7KNFrKNt9BTtogC9Qj30Dh2gPmLOY6fnvHc+uE/ct+5H99PC6joXNY/QP+EO/gI0Lcvu</latexit>

y
<latexit sha1_base64="1yU1oEN0+fRWeutDbwMLwaIqGFc=">AAACm3icbZHfbtMwFMadjLERNtaNGyT+yGKqNGCqkrYS3IAmdsGEuNgQXSfVXeQ4TmvNcYJ9wlqiXPJCXO05uOMZeAncdFPHxpEs/fyd79jHx1EuhQHf/+24S3eW766s3vPur60/2Ghsbh2brNCM91gmM30SUcOlULwHAiQ/yTWnaSR5Pzrbn+X737g2IlNfYJrzYUpHSiSCUbBS2PjZJCmFcRSVn6vT2Gt+x28xMWKU0p1JGLw8DwP8Ck/CtqV2TR1LnZq6lrqWoheEeE28KJyfmJSTirA4g6ttv6rNmHwtaEyAT6A8FzDG1cK/u/ASoa511vWuMtMqbGz7Lb8OfBuCS9jee3Jx9OfHs4vDsPGLxBkrUq6ASWrMIPBzGJZUg2CSVx4pDM8pO6MjPrCoaMrNsKxnW+GmVWKcZNouBbhWr1eUNDVmmkbWOevQ3MzNxP/lBgUkb4alUHkBXLH5RUkhMWR49lE4FpozkFMLlGlhe8VsTDVlYL/Ts0MIbj75Nhy3W0Gn1T6y03iP5rGKHqPnaAcF6DXaQwfoEPUQcx4575wPzoH71N13P7qf5lbXuax5iP4Jt/cXuzjLZQ==</latexit>

W2
<latexit sha1_base64="ZqENc/4lKAsHKDREKpu56iP23mU=">AAACnXicbZHdbtMwFMedjI8Rvgq7gwssqkrjQ1WSVmI3ExUICRBCA9F1Ut1FjuO01hwns09YS5Sn4RV4B+65QbwNbjro2DiSpZ//53/s4+O4kMKA7/9y3I1Ll69c3bzmXb9x89bt1p27+yYvNeNDlstcH8TUcCkUH4IAyQ8KzWkWSz6Kj14u86PPXBuRq0+wKPgko1MlUsEoWClqfeuQjMIsjquP9WHidb7gXUyMmGZ0ex4Fj0+iAD/B8yi0FDbUs9RrqG+pbyl+RIjXwevC1YlpNa8JS3L4sx3VjRmT45ImBPgcqhMBM1yv/U/XXiLUmc763t/MYVhHrbbf9ZvAFyE4hfbz795u8fWntxe1fpAkZ2XGFTBJjRkHfgGTimoQTPLaI6XhBWVHdMrHFhXNuJlUzXRr3LFKgtNc26UAN+rZiopmxiyy2DqXPZrzuaX4v9y4hHRnUglVlMAVW12UlhJDjpdfhROhOQO5sECZFrZXzGZUUwb2Qz07hOD8ky/CftgNet3wg98evECr2ET30UO0jQL0DA3Qa7SHhog595yB88Z56z5wX7nv3Pcrq+uc1myhf8Id/QabFMt9</latexit>

W1
<latexit sha1_base64="PLDg5+rLcG0lHoUECncfJO6MgKo=">AAACnXicbZHdbtMwFMed8DXCV4E7uMBaVWl8qEraSnAzrRpCGghNA9F1Ut1FjuO01hwn2CdbuyhPwyvwDtzvBvE2uOmgY+NIln7+n/+xj4+jXAoDvv/Lca9dv3Hz1tpt787de/cfNB4+2jdZoRkfsExm+iCihkuh+AAESH6Qa07TSPJhdPR2kR8ec21Epr7APOfjlE6USASjYKWw8b1FUgrTKCo/V4ex1zrFm5gYMUnpxiwMXpyEAX6JZ2HHUqemrqVuTT1LPUvRc0K8Fl4VLk9MyllFWJzBn+2wqs2YfC1oTIDPoDwRMMXVyv9q5SVCXeis5/3NHAZV2Gj6bb8OfBWCc2hu/fA2828/vb2wcUbijBUpV8AkNWYU+DmMS6pBMMkrjxSG55Qd0QkfWVQ05WZc1tOtcMsqMU4ybZcCXKsXK0qaGjNPI+tc9Ggu5xbi/3KjApI341KovACu2PKipJAYMrz4KhwLzRnIuQXKtLC9YjalmjKwH+rZIQSXn3wV9jvtoNvufPKb/W20jDX0FK2jDRSg16iPdtAeGiDmPHH6znvng/vMfed+dHeXVtc5r3mM/gl3+BuZj8t8</latexit>

fully-connected
layers

̂y = softmax(f2(f1(x)))

f2

f1

 47

Multiple neurons: Vectorization

x1

x2

x3

x4

w11

w21

w31

w41

z1 = σ(x ⋅ w1 + b1)
z2 = σ(x ⋅ w2 + b2)

z1

z2

w12

w22
w32
w42

fθ : ℝ4 → ℝ2

w11 w12

w21

w31

w41

w22

w32

w42

W

x1

x2

x3

x4

x

z = σ(x ⋅ W + b)

z1

z2
=. b1

b2

+σ

forward pass

linear projection followed

by non-linearity

σ is the layer’s
(non-linear)
activation
function

 48

Connecting the views: FFNNs (MLPs)

NNMLP1(x) = g(xW1 + b1)W2 + b2

 49

Computation Graph View

NNMLP1(x) = g(xW1 + b1)W2 + b2

x W1

MULT b1

ADD

σ

MULT

W2

ADD

b2

softmax parameters

functions

loss

What is x?

 50

Overview

Motivation,  
Brief History, Overview

foundations

representations

Back to the roots:  
Language Models

 Feedforward NNs
(FFNNs)

What’s the input?
Representations

What does ‘eienskappe’ mean?

Keyword in Context (KWIC)

 52

Distributional Hypothesis

"You shall know a word by the
company it keeps" 

(Firth, J. R. 1957:11)

‣ Key idea in NLP: the meaning of a word is represented by
the words which occur frequently close to it

‣ One of the most successful ideas in NLP

‣ Nowadays, we talk about representations

 53

The company it keeps

‣ Representations are distinct

‣ Similar words (or units) have similar representations

 54

What are good representations?

Traditional sparse text encoding:
BOW

Sparse binary text encoding: BOW

n-hot encoding

‣ Sparse high-dimensional vector of dimension |V| (=size of
vocabulary)

 57

One-hot encoding

…
1x|V|

Symbol (word, char,..)

one-hot vector
(length V, one entry is 1)

yellow

…

‣ sb: sparse binary representation  
 
 
 

 58

One-hot encoding: Sparse binary repr.

𝕍 = {cat, dog, table}

fsb(cat) = [1,0,0]
fsb(dog) = [0,1,0]
fsb(table) = [0,0,1]

cos(fsb(cat), fsb(dog)) = 0

(Illustration adapted from S. Riedel)

‣ Representations are distinct

‣ Similar symbols have similar representations 
 
 

‣ Despite of this, n-hot representations are often very
powerful for text classification.

 59

Sparse binary representations

From sparse high-dim
to continuous low-dim

‣ “Embed” symbol  
in dense low-dimensional space (d << |V|)

‣ Dimensionality d (hyperparameter)

 61

Dense continuous: Embeddings

fdc(w) ↦ ℝd

𝕍 = {cat, dog, table} d = 2
E ∈ ℝ3×2

fsb(cat) = [0.7,0.8]
fsb(dog) = [0.75,0.6]

fsb(table) = [0.1,0.15]

Note: d < |V|

E
<latexit sha1_base64="UcLQQkZ/ucg95j/emm+9is4DsWY=">AAAB6HicbZDJSgNBEIZr4hbHLerRS2MQPIWZeNCLGBTBYwJmgWQIPZ2apE3PQnePEEKewIsHRbzqw3j3Ir6NneWgiT80fPx/FV1VfiK40o7zbWWWlldW17Lr9sbm1vZObnevpuJUMqyyWMSy4VOFgkdY1VwLbCQSaegLrPv9q3Fev0epeBzd6kGCXki7EQ84o9pYlet2Lu8UnInIIrgzyF982OfJ+5ddbuc+W52YpSFGmgmqVNN1Eu0NqdScCRzZrVRhQlmfdrFpMKIhKm84GXREjozTIUEszYs0mbi/O4Y0VGoQ+qYypLqn5rOx+V/WTHVw5g15lKQaIzb9KEgF0TEZb006XCLTYmCAMsnNrIT1qKRMm9vY5gju/MqLUCsW3JNCseLkS5cwVRYO4BCOwYVTKMENlKEKDBAe4AmerTvr0XqxXqelGWvWsw9/ZL39APnCkAo=</latexit>

embedding matrix

=

|V|xd

 62

Lookup: Representing a symbol

 http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdfAdapted from Lecture 5 (Riedel)

E
<latexit sha1_base64="UcLQQkZ/ucg95j/emm+9is4DsWY=">AAAB6HicbZDJSgNBEIZr4hbHLerRS2MQPIWZeNCLGBTBYwJmgWQIPZ2apE3PQnePEEKewIsHRbzqw3j3Ir6NneWgiT80fPx/FV1VfiK40o7zbWWWlldW17Lr9sbm1vZObnevpuJUMqyyWMSy4VOFgkdY1VwLbCQSaegLrPv9q3Fev0epeBzd6kGCXki7EQ84o9pYlet2Lu8UnInIIrgzyF982OfJ+5ddbuc+W52YpSFGmgmqVNN1Eu0NqdScCRzZrVRhQlmfdrFpMKIhKm84GXREjozTIUEszYs0mbi/O4Y0VGoQ+qYypLqn5rOx+V/WTHVw5g15lKQaIzb9KEgF0TEZb006XCLTYmCAMsnNrIT1qKRMm9vY5gju/MqLUCsW3JNCseLkS5cwVRYO4BCOwYVTKMENlKEKDBAe4AmerTvr0XqxXqelGWvWsw9/ZL39APnCkAo=</latexit>

=x..

..

..

book

symbol

sparse binary one-hot,

high-dimensional (V)

embedding matrix

dense, continuous

representation

low-dimensional (d)

one-hot word embedding
linear projection from V->d

http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf
http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf

‣ Extract core linguistic features

‣ Define a vector for each feature (lookup Embedding table)

‣ Can train representation E together with the network

 63

In general, the neural way for
extracting features:

f1, . . fn

 64

Computational Graph View

W1

MULT
b1

ADD

σ

MULT

W2

ADD

b2

softmax parameters

functions

loss

cool <3

lookup lookup

concat

E
<latexit sha1_base64="UcLQQkZ/ucg95j/emm+9is4DsWY=">AAAB6HicbZDJSgNBEIZr4hbHLerRS2MQPIWZeNCLGBTBYwJmgWQIPZ2apE3PQnePEEKewIsHRbzqw3j3Ir6NneWgiT80fPx/FV1VfiK40o7zbWWWlldW17Lr9sbm1vZObnevpuJUMqyyWMSy4VOFgkdY1VwLbCQSaegLrPv9q3Fev0epeBzd6kGCXki7EQ84o9pYlet2Lu8UnInIIrgzyF982OfJ+5ddbuc+W52YpSFGmgmqVNN1Eu0NqdScCRzZrVRhQlmfdrFpMKIhKm84GXREjozTIUEszYs0mbi/O4Y0VGoQ+qYypLqn5rOx+V/WTHVw5g15lKQaIzb9KEgF0TEZb006XCLTYmCAMsnNrIT1qKRMm9vY5gju/MqLUCsW3JNCseLkS5cwVRYO4BCOwYVTKMENlKEKDBAe4AmerTvr0XqxXqelGWvWsw9/ZL39APnCkAo=</latexit>

train with network
(model parameters)

Dense continuous text encodings

great !

cool <3

How to combine word embeddings?

this is

CBOW(wi, . . , wn) =
n

∑
i

E[wi]

Dense continuous text encoding: 
e.g. continuous BOW (CBOW)

projection + CBOW

Example input document 1:

cool <3

.. .. n-hot

lookup+

is great

CBOW(wi, . . , wn) =
n

∑
i

E[wi]

+

Dense continuous text encoding: 
e.g. continuous BOW (CBOW)

CBOW representation

Example input document 2:

this !
+ +

‣ What’s the biggest limitation of BOW/CBOW?

‣ Similar to unigram model: It disregards the order of
items (e.g. words in a sequence)

‣ Example:

‣ “it was not good, it was actually terrible”

‣ “it was not terrible, it was actually good”

‣ A simple solution?

 68

Limitation of BOW

‣ Bag of n-grams

‣ “not good”, …

‣ Problems:

‣ Parameter explosion (BOW/n-hot) or even more
averaging (CBOW)

‣ No sharing between similar words & n-grams

 69

Possible Improvement

‣ Embedding layer E:

‣ trained with network from scratch - task-specific

‣ initialized with off-the-shelf pre-trained word
embeddings (e.g., Glove, Polyglot, fastText)

‣ Pre-trained embedding initialization typically leads to
performance gains. Why?

‣ train on more words

‣ implicitly more data

‣ Ways to obtain off-the-shelf embeddings? (word vector
space representation?)

 70

Where to get task-specific E from?  
From Scratch vs Pre-trained

‣ Two major methods:

‣ Count! (pre-deep learning method, aka “word vector
space models”)

‣ Predict! (core idea underlying word2vec - lecture 1)

 71

Embeddings: New? No!

‣ Represent the “company” of a word in terms of a word co-
occurrence-matrix, get the statistics (counts)

‣ E.g. Latent Semantic Analysis (LSA) (Deerwester et al., 1990)
SVD decomposition over co-occurence matrix to reduce to
lower-dimensional space (matrix U where dim < |docs|)

 72

Count-based methods

https://simonpaarlberg.com/posts/2012-06-28-latent-semantic-analyses/box2.png

‣ Key idea: predict the context of a word (instead of
capturing co-occurrence statistics in matrix C) to directly
learn the low-dimensional word vector representation

‣ Word2vec (family of methods) Mikolov et al. (2013)
[Lecture 1 by Ryan] - scales well to large data

 73

Prediction-based methods

Illustration by Chris Manning

 74

Example: Cross-lingual POS tagging-
Word embedding initialization

3.8%

10%

Mean over 21 languages  

(Plank & Agic, 2018) 

 75

Overview

Motivation,  
Brief History, Overview

foundations

representations

Back to the roots:  
Language Models

 Feedforward NNs
(FFNNs)

What’s the input?
Representations

 76

As the clock rang the students opened

fixed window of n words

the

predict!

Window-based neural LM via FFNN

http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf

 77 http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdfAdapted from Abigail See

A fixed-window based neural LM

E

concatenation

http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf
http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf

‣ Iteratively move the n-gram window through a very large
corpus to predict the next word at each time step

‣ Cross-entropy loss (negative log-likelihood): 
 
 

‣ Note: typically very large vocabulary (softmax)

‣ Workaround: negative sampling (lecture 1)

 78

Training the Neural n-gram LM

L = − logp(wt |wt−1 . . wt−n+1)

 79

What about these issues?

‣ Can it handle similar words?

‣ she bought a bicycle

‣ she purchased a bicycle  

‣ Long-distance dependencies?

‣ for programming she yesterday purchased her own brand new laptop

‣ for running she yesterday purchased her brand new sportswatch

‣ Simplest solution:

‣ Train an <UNK> word vector, e.g., map rare words to
UNK (count < threshold)

‣ Problem:

‣ Conflates a long tail into the same vector representation

‣ Subword representations (character-level models) to the
rescue!

‣ More on these later (after we have seen CNNs)

 80

Tips for unknown words

 81

Overview

Motivation,  
Brief History, Overview

foundations

representations

beyond FFNNs

Back to the roots:  
Language Models

 Feedforward NNs
(FFNNs)

What’s the input?
Representations

Convolutional Neural
Networks (CNNs)

CNNs / Convnets

[1] http://www.deeplearningbook.org/contents/convnets.html

feedforward NN

fixed-size representation

‣ Neural networks for processing data with a grid-like
typology (LeCun & Bengio, 1995)

‣ Can handle arbitrary-length inputs and reduce them down
to a fixed size vector representation

‣ Core idea: Parameter Sharing over Space

 83

Convolutional Neural Network (CNN)

W
<latexit sha1_base64="cbYvexWYcRxOGGKyR6gpkADwvfQ=">AAAB8XicbVC7SgNBFL0bXzG+opY2g0FIFXZjoZ0RG8sI5oHZJcxOZpMhs7PLzKwQlnyDjY2FIrb+heIP2Pkh9s4mKTTxwIXDOfdyz71+zJnStv1l5ZaWV1bX8uuFjc2t7Z3i7l5TRYkktEEiHsm2jxXlTNCGZprTdiwpDn1OW/7wIvNbt1QqFolrPYqpF+K+YAEjWBvpxg2xHvhB2hp3iyW7Yk+AFokzI6Wzj7c7t/z9Xu8WP91eRJKQCk04Vqrj2LH2Uiw1I5yOC26iaIzJEPdpx1CBQ6q8dJJ4jI6M0kNBJE0JjSbq74kUh0qNQt90ZgnVvJeJ/3mdRAenXspEnGgqyHRRkHCkI5Sdj3pMUqL5yBBMJDNZERlgiYk2TyqYJzjzJy+SZrXiHFeqV3apdg5T5OEADqEMDpxADS6hDg0gIOAeHuHJUtaD9Wy9TFtz1mxmH/7Aev0B7wqViw==</latexit>

neurons in a feature map

share the same

‣ CNNs use convolutions over the input (convolution +
pooling)

‣ Each convolution applies filters (or kernels; often several
hundreds of them) and combines their results via
pooling (to reduce the resolution of the feature map and
the sensitivity of the output to shifts and distortion)

 84

What are CNNs - Terminology

W
<latexit sha1_base64="cbYvexWYcRxOGGKyR6gpkADwvfQ=">AAAB8XicbVC7SgNBFL0bXzG+opY2g0FIFXZjoZ0RG8sI5oHZJcxOZpMhs7PLzKwQlnyDjY2FIrb+heIP2Pkh9s4mKTTxwIXDOfdyz71+zJnStv1l5ZaWV1bX8uuFjc2t7Z3i7l5TRYkktEEiHsm2jxXlTNCGZprTdiwpDn1OW/7wIvNbt1QqFolrPYqpF+K+YAEjWBvpxg2xHvhB2hp3iyW7Yk+AFokzI6Wzj7c7t/z9Xu8WP91eRJKQCk04Vqrj2LH2Uiw1I5yOC26iaIzJEPdpx1CBQ6q8dJJ4jI6M0kNBJE0JjSbq74kUh0qNQt90ZgnVvJeJ/3mdRAenXspEnGgqyHRRkHCkI5Sdj3pMUqL5yBBMJDNZERlgiYk2TyqYJzjzJy+SZrXiHFeqV3apdg5T5OEADqEMDpxADS6hDg0gIOAeHuHJUtaD9Wy9TFtz1mxmH/7Aev0B7wqViw==</latexit>

a convolutional layer has typically  
several feature maps (with different) 

 to extract different features

‣ Translational equivalence

 85

Intuition: Invariance

Slide by Jes Frellsen

‣ Filter (kernel) of size 3x3

‣ “to identify indicative local predictors" (Goldberg, 2015)

 86

Example of a 2D convolution

Source: http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

‣ Imagine a 1d input vector

‣ f: [10, 50, 60, 10, 20, 40, 30]

‣ g: [1/3, 1/3, 1/3] 

‣ Let’s compute the value at position h(3)

 87

Convolution - Filter (Kernel) example

[10, 50, 60, 10, 20, 40, 30]

[0, 1/3,1/3,1/3, 0, 0, 0]

h(3) = 40
50 * 1

3 + 60 * 1
3 + 10 * 1

3 = 40

h(4) = 30

[0, 0, 1/3,1/3,1/3, 0, 0]

What is this kernel doing?
computing a moving average

(f * g)(i) =
m

∑
j=1

g(j) ⋅ f(i − j + m /2)

Convolutions for Text
Collobert et al. (2011); Kim (2014)

Types of convolution

She likes strong coffee narrow/“valid” convolution

wide/“same” convolution
(padded)

<s> She likes strong coffee </s>

She likes
likes strong

strong coffee

CNN on Text

She likes strong coffee

She likes
likes strong

strong coffee

n=4 input length

din=3 embedding dim

wi=c(wi,..,wi+k-1)

g

g

g

 Wdw_i x d_out

convolution + non-linearity

pooling

dout=4 conv output dim

pi

pi=g(wiW+b)

ci=maxj∈m(pi[j])

feature map

pooled
feature map

dw_i=kdin=6 filter width

k=2 window length

apply same “filter”
to each window

“soft” n-grams

Stride

http://d3kbpzbmcynnmx.cloudfront.net/wp-content/uploads/2015/11/Screen-Shot-2015-11-05-at-2.18.38-PM.png

http://d3kbpzbmcynnmx.cloudfront.net/wp-content/uploads/2015/11/Screen-Shot-2015-11-05-at-10.18.08-AM.png

‣ Max pooling: “Did you see this feature anywhere in the
range?” (most common)

‣ Average pooling: “How prevalent is this feature over the
entire range”

 93

Types of pooling (1/3)

ci=maxj∈m(pi[j])

ci=1/m∑m pi

‣ k-Max pooling: “Did you see this feature up to k
times?” (Kalchbrenner et al., 2014)

‣ retain top k values in each dimension instead of only
the best one, while preserving the order in which they
appeare

 94

Types of pooling (2/3)

1 2 3
9 6 5
2 3 1
7 8 1
3 4 1

1-max pooling 2-max pooling

9 8 5
9 6 3
7 8 5 9 8 5

7 6 3

‣ Dynamic pooling: “Are some parts more
informative?” (Johnson & Zhang, 2015)

‣ split pi’s into separate groups based on domain
knowledge and apply max-pooling to each region/group

‣ e.g. initial sentences more predictive for news topic
classification (Johnson & Zhang, 2015)

 95

Types of pooling (3/3)

1 2 3
9 6 5
2 3 1
7 8 1
3 4 1

pooling

pooling

 96

CNNs for Text Classification (Kim, 2014)
different “channels” for pre-trained & embeddings from scratch

‣ Main idea: apply the same parametrized function over all
n-grams in the sequence.

‣ This creates a series of m vectors, each representing a
particular n-gram in the sequence

‣ The representation is sensitive to the identity and order of
the words in the n-gram, but the same representation will
be extracted for a n-gram regardless of its position in the
sequence

 97

CNNs - Interim summary

Two advances in
CNNs

‣ Hierarchical convolutions: apply a sequence of r
convolutions that feed into each other

‣ Resulting vectors capture increasingly larger windows
(“receptive fields”)

 99

Stacked convolutions

p1
1:m1

= CONVk1U1,b1(w1 : n)

p2
1:m2

= CONVk2U2,b2(p1 : m1)

…

pr
1:mr

= CONVkrUr,br(pr−1 : mr−1) was not very good

was not not very very good

not very goodwas not very

Dilated convolutions
(Strubell et al., 2017; Kalchbrenner et al,. 2016; Yu and Koltun, 2016)

‣ Each layer in the hierarchy has a stride size of k-1

‣ speed gains over RNNs

https://www.aclweb.org/anthology/D17-1283
https://arxiv.org/pdf/1610.10099.pdf

 101

Overview

Motivation,  
Brief History, Overview

foundations

representations

beyond FFNNs

Back to the roots:  
Language Models

 Feedforward NNs
(FFNNs)

What’s the input?
Representations

Convolutional Neural
Networks (CNNs)

Recurrent Neural
Network (RNNs)

BREAK

RNNs

‣ RNNs (and their variants) are one of the most powerful
and widespread architectures to date

‣ From J.Schmidhuber’s homepage:

 104

Recurrent Neural Networks (RNNs)
Elman, 1990

http://people.idsia.ch/~juergen/

‣ Can handle arbitrary length inputs (just like CNNs or a
FFNN with a CBOW input representation)

‣ Unlike CBOW, they model the order in the sequence

‣ Unlike vanilla CNNs, they can deal with long-distance
dependencies (especially the gated RNN variants)

‣ Do not need to make the Markov assumption

‣ Opens up for a family of models:  
Conditioned generation models

 105

Recurrent Neural Networks (RNNs)

 106

Recurrent Neural Networks (RNNs)

“vanilla” Neural Network RNN

RNNs have an internal
“memory” (state)

which is updated as the
sequence is read

Key Idea:

recurrence /
memory / state

h = g(Vx + b)

ŷ = Wh + b ̂yt = Wht + b

h = g(Vxt + Uht−1 + c)

 107

Recurrent Neural Networks

I love New York

Input sequence 
(any length)

Hidden states

Output (sequence)
(optional)

A family of recurrent NN architectures

x1
<latexit sha1_base64="jf0czKzVihW3BrQ9e4k5JLYwyoM=">AAAB83icbVC7TgJBFL2LL8QXamJjM5GYWJFdKLQk2FhCIo+E3ZDZYRYmzM5uZmaNZMNv2FhojC1/4RfY2fgtzgKFgieZ5OSce3PPHD/mTGnb/rJyG5tb2zv53cLe/sHhUfH4pK2iRBLaIhGPZNfHinImaEszzWk3lhSHPqcdf3yb+Z0HKhWLxL2exNQL8VCwgBGsjeS6IdYjP0gf+860XyzZZXsOtE6cJSnVzprfbFb/aPSLn+4gIklIhSYcK9Vz7Fh7KZaaEU6nBTdRNMZkjIe0Z6jAIVVeOs88RZdGGaAgkuYJjebq740Uh0pNQt9MZhnVqpeJ/3m9RAc3XspEnGgqyOJQkHCkI5QVgAZMUqL5xBBMJDNZERlhiYk2NRVMCc7ql9dJu1J2quVK07RRhwXycA4XcAUOXEMN7qABLSAQwxO8wKuVWM/Wm/W+GM1Zy51T+ANr9gMJ7JVh</latexit>

x2
<latexit sha1_base64="JdW+FYHV+noxUdo2ipyTBEzQKD4=">AAAB83icbVC7TgJBFL2LL8QXamJjM5GYWJFdKLQk2FhCIo+E3ZDZYRYmzM5uZmaNZMNv2FhojC1/4RfY2fgtzgKFgieZ5OSce3PPHD/mTGnb/rJyG5tb2zv53cLe/sHhUfH4pK2iRBLaIhGPZNfHinImaEszzWk3lhSHPqcdf3yb+Z0HKhWLxL2exNQL8VCwgBGsjeS6IdYjP0gf+5Vpv1iyy/YcaJ04S1KqnTW/2az+0egXP91BRJKQCk04Vqrn2LH2Uiw1I5xOC26iaIzJGA9pz1CBQ6q8dJ55ii6NMkBBJM0TGs3V3xspDpWahL6ZzDKqVS8T//N6iQ5uvJSJONFUkMWhIOFIRygrAA2YpETziSGYSGayIjLCEhNtaiqYEpzVL6+TdqXsVMuVpmmjDgvk4Rwu4AocuIYa3EEDWkAghid4gVcrsZ6tN+t9MZqzljun8AfW7AcLcZVi</latexit>

x3
<latexit sha1_base64="2rYADewHesamV2j4Kx7ql5fceuA=">AAAB83icbVC7TgJBFL2LL8QXamJjM5GYWJFdKLQk2FhCIo+E3ZDZYRYmzM5uZmaNZMNv2FhojC1/4RfY2fgtzgKFgieZ5OSce3PPHD/mTGnb/rJyG5tb2zv53cLe/sHhUfH4pK2iRBLaIhGPZNfHinImaEszzWk3lhSHPqcdf3yb+Z0HKhWLxL2exNQL8VCwgBGsjeS6IdYjP0gf+9Vpv1iyy/YcaJ04S1KqnTW/2az+0egXP91BRJKQCk04Vqrn2LH2Uiw1I5xOC26iaIzJGA9pz1CBQ6q8dJ55ii6NMkBBJM0TGs3V3xspDpWahL6ZzDKqVS8T//N6iQ5uvJSJONFUkMWhIOFIRygrAA2YpETziSGYSGayIjLCEhNtaiqYEpzVL6+TdqXsVMuVpmmjDgvk4Rwu4AocuIYa3EEDWkAghid4gVcrsZ6tN+t9MZqzljun8AfW7AcM9pVj</latexit>

x4
<latexit sha1_base64="cLB50kQwUqWf4NzMXQSuSHHAOo4=">AAAB83icbVDLSgMxFL1TX7W+qoIbN8EiuCozVdBlqRuXLdgHdIaSSTNtaCYzJBmxDP0NNy4Ucdu/8AvcufFbzLRdaOuBwOGce7knx485U9q2v6zc2vrG5lZ+u7Czu7d/UDw8aqkokYQ2ScQj2fGxopwJ2tRMc9qJJcWhz2nbH91mfvuBSsUica/HMfVCPBAsYARrI7luiPXQD9LH3tWkVyzZZXsGtEqcBSlVTxrfbFr7qPeKn24/IklIhSYcK9V17Fh7KZaaEU4nBTdRNMZkhAe0a6jAIVVeOss8QedG6aMgkuYJjWbq740Uh0qNQ99MZhnVspeJ/3ndRAc3XspEnGgqyPxQkHCkI5QVgPpMUqL52BBMJDNZERliiYk2NRVMCc7yl1dJq1J2LsuVhmmjBnPk4RTO4AIcuIYq3EEdmkAghid4gVcrsZ6tN+t9PpqzFjvH8AfW9AcOe5Vk</latexit>

y4
<latexit sha1_base64="S1Lr4qQEjtImeHckGNXD5vwIfgs=">AAAB83icbVDLSgMxFL1TX7W+qi4VCRbBVZmpgi6Lbly2YB/QKSWTZtrQTGZIMsIwdOkvuHGhiFv3/Q53foM/YabtQlsPBA7n3Ms9OV7EmdK2/WXlVlbX1jfym4Wt7Z3dveL+QVOFsSS0QUIeyraHFeVM0IZmmtN2JCkOPE5b3ug281sPVCoWinudRLQb4IFgPiNYG8l1A6yHnp8mvctxr1iyy/YUaJk4c1KqHk/q348nk1qv+On2QxIHVGjCsVIdx450N8VSM8LpuODGikaYjPCAdgwVOKCqm04zj9GZUfrID6V5QqOp+nsjxYFSSeCZySyjWvQy8T+vE2v/upsyEcWaCjI75Mcc6RBlBaA+k5RonhiCiWQmKyJDLDHRpqaCKcFZ/PIyaVbKzkW5Ujdt3MAMeTiCUzgHB66gCndQgwYQiOAJXuDViq1n6816n43mrPnOIfyB9fEDHlmVbw==</latexit>

y3
<latexit sha1_base64="chlOkCijXIsIoglvh0bLNaHXgQU=">AAAB83icbVC7SgNBFL0bXzG+opaKDAbBKuwmhZZBG8sEzAOyIcxOZpMhs7PLzKywLCn9BRsLRWzt8x12foM/4WySQhMPDBzOuZd75ngRZ0rb9peVW1vf2NzKbxd2dvf2D4qHRy0VxpLQJgl5KDseVpQzQZuaaU47kaQ48Dhte+PbzG8/UKlYKO51EtFegIeC+YxgbSTXDbAeeX6a9KuTfrFkl+0Z0CpxFqRUO502vh/PpvV+8dMdhCQOqNCEY6W6jh3pXoqlZoTTScGNFY0wGeMh7RoqcEBVL51lnqALowyQH0rzhEYz9fdGigOlksAzk1lGtexl4n9eN9b+dS9lIoo1FWR+yI850iHKCkADJinRPDEEE8lMVkRGWGKiTU0FU4Kz/OVV0qqUnWq50jBt3MAceTiBc7gEB66gBndQhyYQiOAJXuDViq1n6816n4/mrMXOMfyB9fEDHNSVbg==</latexit>

y2
<latexit sha1_base64="vz+74HXlsbq+Jd714sYXt83YHJs=">AAAB83icbVDLSsNAFL3xWeur6lKRwSK4Kkld6LLoxmUL9gFNKJPppB06mYSZiRBCl/6CGxeKuHXf73DnN/gTTtoutPXAwOGce7lnjh9zprRtf1krq2vrG5uFreL2zu7efungsKWiRBLaJBGPZMfHinImaFMzzWknlhSHPqdtf3Sb++0HKhWLxL1OY+qFeCBYwAjWRnLdEOuhH2Rprzrulcp2xZ4CLRNnTsq1k0nj+/F0Uu+VPt1+RJKQCk04Vqrr2LH2Miw1I5yOi26iaIzJCA9o11CBQ6q8bJp5jM6N0kdBJM0TGk3V3xsZDpVKQ99M5hnVopeL/3ndRAfXXsZEnGgqyOxQkHCkI5QXgPpMUqJ5aggmkpmsiAyxxESbmoqmBGfxy8ukVa04l5Vqw7RxAzMU4BjO4AIcuIIa3EEdmkAghid4gVcrsZ6tN+t9NrpizXeO4A+sjx8bT5Vt</latexit>

y1
<latexit sha1_base64="MHG+XxJG+nl9HfS8PJD3RXLa/6E=">AAAB83icbVDLSsNAFL3xWeur6lKRwSK4Kkld6LLoxmUL9gFNKJPppB06mYSZiRBCl/6CGxeKuHXf73DnN/gTTtoutPXAwOGce7lnjh9zprRtf1krq2vrG5uFreL2zu7efungsKWiRBLaJBGPZMfHinImaFMzzWknlhSHPqdtf3Sb++0HKhWLxL1OY+qFeCBYwAjWRnLdEOuhH2Rpzxn3SmW7Yk+BlokzJ+XayaTx/Xg6qfdKn24/IklIhSYcK9V17Fh7GZaaEU7HRTdRNMZkhAe0a6jAIVVeNs08RudG6aMgkuYJjabq740Mh0qloW8m84xq0cvF/7xuooNrL2MiTjQVZHYoSDjSEcoLQH0mKdE8NQQTyUxWRIZYYqJNTUVTgrP45WXSqlacy0q1Ydq4gRkKcAxncAEOXEEN7qAOTSAQwxO8wKuVWM/Wm/U+G12x5jtH8AfWxw8ZypVs</latexit>

{
<latexit sha1_base64="6ypV9iCvDDWXCEL5HqeRY4msclY=">AAAB+XicbVDLSsNAFL2pr1pfUZduQktBEEpSF7osunFZwT6gCWEynbRDJ5MwMymE0L9w6caFIm79E3f9GydtF9p6YOBwzr0zZ06QMCqVbc+N0tb2zu5eeb9ycHh0fGKennVlnApMOjhmsegHSBJGOekoqhjpJ4KgKGCkF0zuC783JULSmD+pLCFehEachhQjpSXfNOtuhNQ4CPPMd2YVN/fNmt2wF7A2ibMitVbVvXqet7K2b367wxinEeEKMyTlwLET5eVIKIoZ0VemkiQIT9CIDDTlKCLSyxfJZ1ZdK0MrjIU+XFkL9fdGjiIpsyjQk0VMue4V4n/eIFXhrZdTnqSKcLx8KEyZpWKrqMEaUkGwYpkmCAuqs1p4jATCSpdV0SU461/eJN1mw7luNB91G3ewRBkuoAqX4MANtOAB2tABDFN4gTd4N3Lj1fgwPpejJWO1cw5/YHz9APF6li8=</latexit>

{
<latexit sha1_base64="6ypV9iCvDDWXCEL5HqeRY4msclY=">AAAB+XicbVDLSsNAFL2pr1pfUZduQktBEEpSF7osunFZwT6gCWEynbRDJ5MwMymE0L9w6caFIm79E3f9GydtF9p6YOBwzr0zZ06QMCqVbc+N0tb2zu5eeb9ycHh0fGKennVlnApMOjhmsegHSBJGOekoqhjpJ4KgKGCkF0zuC783JULSmD+pLCFehEachhQjpSXfNOtuhNQ4CPPMd2YVN/fNmt2wF7A2ibMitVbVvXqet7K2b367wxinEeEKMyTlwLET5eVIKIoZ0VemkiQIT9CIDDTlKCLSyxfJZ1ZdK0MrjIU+XFkL9fdGjiIpsyjQk0VMue4V4n/eIFXhrZdTnqSKcLx8KEyZpWKrqMEaUkGwYpkmCAuqs1p4jATCSpdV0SU461/eJN1mw7luNB91G3ewRBkuoAqX4MANtOAB2tABDFN4gTd4N3Lj1fgwPpejJWO1cw5/YHz9APF6li8=</latexit>

{
<latexit sha1_base64="6ypV9iCvDDWXCEL5HqeRY4msclY=">AAAB+XicbVDLSsNAFL2pr1pfUZduQktBEEpSF7osunFZwT6gCWEynbRDJ5MwMymE0L9w6caFIm79E3f9GydtF9p6YOBwzr0zZ06QMCqVbc+N0tb2zu5eeb9ycHh0fGKennVlnApMOjhmsegHSBJGOekoqhjpJ4KgKGCkF0zuC783JULSmD+pLCFehEachhQjpSXfNOtuhNQ4CPPMd2YVN/fNmt2wF7A2ibMitVbVvXqet7K2b367wxinEeEKMyTlwLET5eVIKIoZ0VemkiQIT9CIDDTlKCLSyxfJZ1ZdK0MrjIU+XFkL9fdGjiIpsyjQk0VMue4V4n/eIFXhrZdTnqSKcLx8KEyZpWKrqMEaUkGwYpkmCAuqs1p4jATCSpdV0SU461/eJN1mw7luNB91G3ewRBkuoAqX4MANtOAB2tABDFN4gTd4N3Lj1fgwPpejJWO1cw5/YHz9APF6li8=</latexit>

Core idea:
Parameter
Sharing over  

Time
(=apply  

repeatedly)
U

h = g(Vxt + Uht−1 + c)

h1 h2 h3 h4

Before we dig into details
- The RNN abstraction

Example from Cho (2015)

Count the number of 1s

Count the number of 1s

def add1(el,s):
 if el==1: return s+1
 else: return s

v=[0,1,0,0,1,1]Two important
components:
• memory s
• function add1 is

applied to each
symbol in the
input one at a time to
update the memory

s=0
for el in v:
 s=add1(el,s)
print("count(1):", s)

‣ Input sequence of vectors:

‣ Start state:

‣ consists of two functions:

‣ function consumes input and previous state

‣ function maps states to outputs

 111

The RNN abstraction

x1:n
<latexit sha1_base64="1Yv7OnqZEENJvk/HhqiGD5GVMnM=">AAAB+XicbVDLSsNAFL3xWesrKrhxEyyCq5LUheKq1I3LFuwD2hAm00k7dDIJM5NiCfkTNy4UEVz5C36BOzd+i5O2C209MHA4517umePHjEpl21/Gyura+sZmYau4vbO7t28eHLZklAhMmjhikej4SBJGOWkqqhjpxIKg0Gek7Y9ucr89JkLSiN+pSUzcEA04DShGSkueafZCpIZ+kN57qXPNs8wzS3bZnsJaJs6clKrHjW/6Vvuoe+Znrx/hJCRcYYak7Dp2rNwUCUUxI1mxl0gSIzxCA9LVlKOQSDedJs+sM630rSAS+nFlTdXfGykKpZyEvp7Mc8pFLxf/87qJCq7clPI4UYTj2aEgYZaKrLwGq08FwYpNNEFYUJ3VwkMkEFa6rKIuwVn88jJpVcrORbnS0G3UYIYCnMApnIMDl1CFW6hDEzCM4QGe4NlIjUfjxXidja4Y850j+APj/Qeh4pda</latexit>

s0
<latexit sha1_base64="A6RWsBRMW2IFwes8+VMPbvldk1I=">AAAB83icbVDLSsNAFL2pr1pfVcGNm8EiuCpJXeiy1I3LFuwDmlAm00k7dDIJMxOhhP6GGxeKuO1f+AXu3PgtTtIutPXAwOGce7lnjh9zprRtf1mFjc2t7Z3ibmlv/+DwqHx80lFRIgltk4hHsudjRTkTtK2Z5rQXS4pDn9OuP7nL/O4jlYpF4kFPY+qFeCRYwAjWRnLdEOuxH6RqYM8G5YpdtXOgdeIsSaV+1vpm88ZHc1D+dIcRSUIqNOFYqb5jx9pLsdSMcDoruYmiMSYTPKJ9QwUOqfLSPPMMXRpliIJImic0ytXfGykOlZqGvpnMMqpVLxP/8/qJDm69lIk40VSQxaEg4UhHKCsADZmkRPOpIZhIZrIiMsYSE21qKpkSnNUvr5NOrepcV2st00YDFijCOVzAFThwA3W4hya0gUAMT/ACr1ZiPVtv1vtitGAtd07hD6z5DwDElVs=</latexit>

R
<latexit sha1_base64="4nihYO00+1zs3A6JVkc3lXq1vVk=">AAAB+HicbVDLSsNAFL3xWeOjUZduBkvBVUnqQjdi0Y3LKvYBbQiT6aQdOnkwMxFq6Je4EVTErT/h3o34N07aLrT1wMDhnHu5Z46fcCaVbX8bS8srq2vrhQ1zc2t7p2jt7jVlnApCGyTmsWj7WFLOItpQTHHaTgTFoc9pyx9e5n7rjgrJ4uhWjRLqhrgfsYARrLTkWcVyN8Rq4AeZ9OyxeeNZJbtiT4AWiTMjpfMP8yx5+jLrnvXZ7cUkDWmkCMdSdhw7UW6GhWKE07HZTSVNMBniPu1oGuGQSjebBB+jslZ6KIiFfpFCE/X3RoZDKUehryfzlHLey8X/vE6qglM3Y1GSKhqR6aEg5UjFKG8B9ZigRPGRJpgIprMiMsACE6W7MnUJzvyXF0mzWnGOK9Vru1S7gCkKcACHcAQOnEANrqAODSCQwgM8w4txbzwar8bbdHTJmO3swx8Y7z83jpXL</latexit>

O
<latexit sha1_base64="KZgCr0X/R48gwtOcAm5d6WPcq74=">AAAB+HicbVDLSsNAFL3xWeOjUZdugqXgqiR1oRux6MadFewD2hAm00k7dDIJMxOhhn6JG0FF3PoT7t2If+Ok7UJbDwwczrmXe+YECaNSOc63sbS8srq2XtgwN7e2d4rW7l5TxqnApIFjFot2gCRhlJOGooqRdiIIigJGWsHwMvdbd0RIGvNbNUqIF6E+pyHFSGnJt4rlboTUIAgz6Ttj89q3Sk7FmcBeJO6MlM4/zLPk6cus+9ZntxfjNCJcYYak7LhOorwMCUUxI2Ozm0qSIDxEfdLRlKOISC+bBB/bZa307DAW+nFlT9TfGxmKpBxFgZ7MU8p5Lxf/8zqpCk+9jPIkVYTj6aEwZbaK7bwFu0cFwYqNNEFYUJ3VxgMkEFa6K1OX4M5/eZE0qxX3uFK9cUq1C5iiAAdwCEfgwgnU4Arq0AAMKTzAM7wY98aj8Wq8TUeXjNnOPvyB8f4DMwKVyA==</latexit>

RNN(s0,x1:n)
<latexit sha1_base64="6BKJAN1Wro0Ab238zVdJq3k0xmU=">AAACDXicbVDLSsNAFJ3UV62vqks3oVWoKCWpC8VV0Y2rUsU+oClhMp20QyeTMDMRQ8gPuHHjh7hxoYhb9+76N07aCtp6YODMOfdy7z1OQImQhjHSMguLS8sr2dXc2vrG5lZ+e6cp/JAj3EA+9XnbgQJTwnBDEklxO+AYeg7FLWd4mfqtO8wF8dmtjALc9WCfEZcgKJVk5/dvarWS5UE5cNxY2EZy/PO5t2PznCXJYS5n54tG2RhDnyfmlBSrBevoaVSN6nb+y+r5KPQwk4hCITqmEchuDLkkiOIkZ4UCBxANYR93FGXQw6Ibj69J9AOl9HTX5+oxqY/V3x0x9ISIPEdVpquKWS8V//M6oXTPujFhQSgxQ5NBbkh16etpNHqPcIwkjRSBiBO1q44GkEMkVYBpCObsyfOkWSmbJ+XKtUrjAkyQBXugAErABKegCq5AHTQAAg/gGbyCN+1Re9HetY9JaUab9uyCP9A+vwEAH53X</latexit>

(Graphical illustration - recursive - from Yoav Goldberg’s primer, 2015)

si�1
<latexit sha1_base64="c96LUYM+Zu1bTIkKYnPDJ6NfYJc=">AAAB+nicbVC7TsMwFHXKq5RXCiOLoUIqA1VSBhgrWBiLRB9SE0WO67RWHSeyHVAV8g18AQsDCLHyBXwCGx/CjtN2gJYjWTo6517d4+PHjEplWV9GYWl5ZXWtuF7a2Nza3jHLu20ZJQKTFo5YJLo+koRRTlqKKka6sSAo9Bnp+KPL3O/cEiFpxG/UOCZuiAacBhQjpSXPLDshUkM/SKWX0hM7y0qeWbFq1gRwkdgzUmkcVL8/Hpzjpmd+Ov0IJyHhCjMkZc+2YuWmSCiKGclKTiJJjPAIDUhPU45CIt10Ej2DR1rpwyAS+nEFJ+rvjRSFUo5DX0/mQeW8l4v/eb1EBeduSnmcKMLx9FCQMKgimPcA+1QQrNhYE4QF1VkhHiKBsNJt5SXY819eJO16zT6t1a91GxdgiiLYB4egCmxwBhrgCjRBC2BwBx7BM3gx7o0n49V4m44WjNnOHvgD4/0HU+uXCg==</latexit>

si
<latexit sha1_base64="xSxKfSt43C94x4xlsmknRFVO7BU=">AAAB+HicbVC7SgNBFL0bXzE+sirY2AwGwSrsxkLLEBvLBMwDkmWZncwmQ2YfzMwKcdkvsbFQxMLGb/AL7Gz8FmeTFJp4YOBwzr3cM8eLOZPKsr6Mwtr6xuZWcbu0s7u3XzYPDjsySgShbRLxSPQ8LClnIW0rpjjtxYLiwOO0602uc797R4VkUXirpjF1AjwKmc8IVlpyzfIgwGrs+al0U5ZlJdesWFVrBrRK7AWp1I9b3+yt8dF0zc/BMCJJQENFOJayb1uxclIsFCOcZqVBImmMyQSPaF/TEAdUOukseIbOtDJEfiT0CxWaqb83UhxIOQ08PZnHlMteLv7n9RPlXzkpC+NE0ZDMD/kJRypCeQtoyAQlik81wUQwnRWRMRaYKN1VXoK9/OVV0qlV7YtqraXbaMAcRTiBUzgHGy6hDjfQhDYQSOABnuDZuDcejRfjdT5aMBY7R/AHxvsP1baW5Q==</latexit>

yi
<latexit sha1_base64="is9cw6J5Rcd9jcudH34ryzyKDUE=">AAAB+HicbVDLSsNAFL3xWeujUZeKBIvgqiR1ocuiG5ct2Ae0IUymk3boZBJmJkIMXfoVblwo4tZVv8Od3+BPOGm70NYDA4dz7uWeOX7MqFS2/WWsrK6tb2wWtorbO7t7JXP/oCWjRGDSxBGLRMdHkjDKSVNRxUgnFgSFPiNtf3ST++17IiSN+J1KY+KGaMBpQDFSWvLMUi9EaugHWepldDwuembZrthTWMvEmZNy7XjS+H48mdQ987PXj3ASEq4wQ1J2HTtWboaEopiRcbGXSBIjPEID0tWUo5BIN5sGH1tnWulbQST048qaqr83MhRKmYa+nsxjykUvF//zuokKrtyM8jhRhOPZoSBhloqsvAWrTwXBiqWaICyozmrhIRIIK91VXoKz+OVl0qpWnItKtaHbuIYZCnAEp3AODlxCDW6hDk3AkMATvMCr8WA8G2/G+2x0xZjvHMIfGB8/7UmW9Q==</latexit>

xi
<latexit sha1_base64="D1u60Ue08NlPi8C0pNtc860Pzww=">AAAB+HicbVC7SgNBFL3rM8ZHVgUbm8EgWIXdWGgZYmOZgHlAsiyzk9lkyOyDmVkxLvslNhaKWNj4DX6BnY3f4mySQhMPDBzOuZd75ngxZ1JZ1pexsrq2vrFZ2Cpu7+zulcz9g7aMEkFoi0Q8El0PS8pZSFuKKU67saA48DjteOOr3O/cUiFZFN6oSUydAA9D5jOClZZcs9QPsBp5fnrnpizLiq5ZtirWFGiZ2HNSrh01v9lb/aPhmp/9QUSSgIaKcCxlz7Zi5aRYKEY4zYr9RNIYkzEe0p6mIQ6odNJp8AydamWA/EjoFyo0VX9vpDiQchJ4ejKPKRe9XPzP6yXKv3RSFsaJoiGZHfITjlSE8hbQgAlKFJ9ogolgOisiIywwUbqrvAR78cvLpF2t2OeValO3UYcZCnAMJ3AGNlxADa6hAS0gkMADPMGzcW88Gi/G62x0xZjvHMIfGO8/3WiW6g==</latexit>

R,O
<latexit sha1_base64="u0am7LyBtHIlFKoBa9IWl/4cR2o=">AAAB63icbVC7SgNBFL0bXzG+opaKDAbBQsJuLLQM2tiZiHlAsoTZyWwyZHZ2mZkVwpLS1sZCEVv/Id9h5zf4E84mKTTxwIXDOfdy7z1exJnStv1lZZaWV1bXsuu5jc2t7Z387l5dhbEktEZCHsqmhxXlTNCaZprTZiQpDjxOG97gOvUbD1QqFop7PYyoG+CeYD4jWKfS3dltrpMv2EV7ArRInBkplA/H1e/Ho3Glk/9sd0MSB1RowrFSLceOtJtgqRnhdJRrx4pGmAxwj7YMFTigyk0mt47QiVG6yA+lKaHRRP09keBAqWHgmc4A676a91LxP68Va//STZiIYk0FmS7yY450iNLHUZdJSjQfGoKJZOZWRPpYYqJNPGkIzvzLi6ReKjrnxVLVpHEFU2ThAI7hFBy4gDLcQAVqQKAPT/ACr1ZgPVtv1vu0NWPNZvbhD6yPH9TgkSQ=</latexit>

U

https://arxiv.org/abs/1510.00726

 112

The RNN abstraction - More formally

U

si�1
<latexit sha1_base64="c96LUYM+Zu1bTIkKYnPDJ6NfYJc=">AAAB+nicbVC7TsMwFHXKq5RXCiOLoUIqA1VSBhgrWBiLRB9SE0WO67RWHSeyHVAV8g18AQsDCLHyBXwCGx/CjtN2gJYjWTo6517d4+PHjEplWV9GYWl5ZXWtuF7a2Nza3jHLu20ZJQKTFo5YJLo+koRRTlqKKka6sSAo9Bnp+KPL3O/cEiFpxG/UOCZuiAacBhQjpSXPLDshUkM/SKWX0hM7y0qeWbFq1gRwkdgzUmkcVL8/Hpzjpmd+Ov0IJyHhCjMkZc+2YuWmSCiKGclKTiJJjPAIDUhPU45CIt10Ej2DR1rpwyAS+nEFJ+rvjRSFUo5DX0/mQeW8l4v/eb1EBeduSnmcKMLx9FCQMKgimPcA+1QQrNhYE4QF1VkhHiKBsNJt5SXY819eJO16zT6t1a91GxdgiiLYB4egCmxwBhrgCjRBC2BwBx7BM3gx7o0n49V4m44WjNnOHvgD4/0HU+uXCg==</latexit>

si
<latexit sha1_base64="xSxKfSt43C94x4xlsmknRFVO7BU=">AAAB+HicbVC7SgNBFL0bXzE+sirY2AwGwSrsxkLLEBvLBMwDkmWZncwmQ2YfzMwKcdkvsbFQxMLGb/AL7Gz8FmeTFJp4YOBwzr3cM8eLOZPKsr6Mwtr6xuZWcbu0s7u3XzYPDjsySgShbRLxSPQ8LClnIW0rpjjtxYLiwOO0602uc797R4VkUXirpjF1AjwKmc8IVlpyzfIgwGrs+al0U5ZlJdesWFVrBrRK7AWp1I9b3+yt8dF0zc/BMCJJQENFOJayb1uxclIsFCOcZqVBImmMyQSPaF/TEAdUOukseIbOtDJEfiT0CxWaqb83UhxIOQ08PZnHlMteLv7n9RPlXzkpC+NE0ZDMD/kJRypCeQtoyAQlik81wUQwnRWRMRaYKN1VXoK9/OVV0qlV7YtqraXbaMAcRTiBUzgHGy6hDjfQhDYQSOABnuDZuDcejRfjdT5aMBY7R/AHxvsP1baW5Q==</latexit>

yi
<latexit sha1_base64="is9cw6J5Rcd9jcudH34ryzyKDUE=">AAAB+HicbVDLSsNAFL3xWeujUZeKBIvgqiR1ocuiG5ct2Ae0IUymk3boZBJmJkIMXfoVblwo4tZVv8Od3+BPOGm70NYDA4dz7uWeOX7MqFS2/WWsrK6tb2wWtorbO7t7JXP/oCWjRGDSxBGLRMdHkjDKSVNRxUgnFgSFPiNtf3ST++17IiSN+J1KY+KGaMBpQDFSWvLMUi9EaugHWepldDwuembZrthTWMvEmZNy7XjS+H48mdQ987PXj3ASEq4wQ1J2HTtWboaEopiRcbGXSBIjPEID0tWUo5BIN5sGH1tnWulbQST048qaqr83MhRKmYa+nsxjykUvF//zuokKrtyM8jhRhOPZoSBhloqsvAWrTwXBiqWaICyozmrhIRIIK91VXoKz+OVl0qpWnItKtaHbuIYZCnAEp3AODlxCDW6hDk3AkMATvMCr8WA8G2/G+2x0xZjvHMIfGB8/7UmW9Q==</latexit>

xi
<latexit sha1_base64="D1u60Ue08NlPi8C0pNtc860Pzww=">AAAB+HicbVC7SgNBFL3rM8ZHVgUbm8EgWIXdWGgZYmOZgHlAsiyzk9lkyOyDmVkxLvslNhaKWNj4DX6BnY3f4mySQhMPDBzOuZd75ngxZ1JZ1pexsrq2vrFZ2Cpu7+zulcz9g7aMEkFoi0Q8El0PS8pZSFuKKU67saA48DjteOOr3O/cUiFZFN6oSUydAA9D5jOClZZcs9QPsBp5fnrnpizLiq5ZtirWFGiZ2HNSrh01v9lb/aPhmp/9QUSSgIaKcCxlz7Zi5aRYKEY4zYr9RNIYkzEe0p6mIQ6odNJp8AydamWA/EjoFyo0VX9vpDiQchJ4ejKPKRe9XPzP6yXKv3RSFsaJoiGZHfITjlSE8hbQgAlKFJ9ogolgOisiIywwUbqrvAR78cvLpF2t2OeValO3UYcZCnAMJ3AGNlxADa6hAS0gkMADPMGzcW88Gi/G62x0xZjvHMIfGO8/3WiW6g==</latexit>

R,O
<latexit sha1_base64="u0am7LyBtHIlFKoBa9IWl/4cR2o=">AAAB63icbVC7SgNBFL0bXzG+opaKDAbBQsJuLLQM2tiZiHlAsoTZyWwyZHZ2mZkVwpLS1sZCEVv/Id9h5zf4E84mKTTxwIXDOfdy7z1exJnStv1lZZaWV1bXsuu5jc2t7Z387l5dhbEktEZCHsqmhxXlTNCaZprTZiQpDjxOG97gOvUbD1QqFop7PYyoG+CeYD4jWKfS3dltrpMv2EV7ArRInBkplA/H1e/Ho3Glk/9sd0MSB1RowrFSLceOtJtgqRnhdJRrx4pGmAxwj7YMFTigyk0mt47QiVG6yA+lKaHRRP09keBAqWHgmc4A676a91LxP68Va//STZiIYk0FmS7yY450iNLHUZdJSjQfGoKJZOZWRPpYYqJNPGkIzvzLi6ReKjrnxVLVpHEFU2ThAI7hFBy4gDLcQAVqQKAPT/ACr1ZgPVtv1vu0NWPNZvbhD6yPH9TgkSQ=</latexit>

(Graphical illustration - recursive - from Yoav Goldberg’s primer, 2015)

https://arxiv.org/abs/1510.00726

‣ (Notation from Yoav Goldberg’s primer, 2015)

 113

RNN: Unrolled over time

(Graphical illustration - recursive - from Yoav Goldberg’s primer, 2015)

https://arxiv.org/abs/1510.00726
https://arxiv.org/abs/1510.00726

‣ (Notation from Yoav Goldberg’s primer, 2015)

 114

Expansion at time step 4

(Graphical illustration - recursive - from Yoav Goldberg’s primer, 2015)

https://arxiv.org/abs/1510.00726
https://arxiv.org/abs/1510.00726

 115

Training a RNN, parameter tying
̂yt = Wht + b

h = g(Vxt + Uht−1)

x1 x2h0

h1 h2

ŷ1 ŷ2

h3

x3

ŷ3

x4

h4

ŷ4

y1

cost

y2

cost

y2

cost

y4

cost

F

the unrolled graph
is a DAG

computational
graph, we can
backprop back

Parameter tying: the
parameters are shared

across time steps!
Derivatives accumulated.

Pros: - reduce #params

- model arbitrary lengths

U Inspired by Chris Dyer’s lecture

Backpropagation
through time (BPTT, Werbos, 1990).

X

Y

RNN

‣ We process a sequence x by
applying a recurrence formula at
every time step i:

 116

A closer look: inside an RNN

hi = f✓(hi�1,xi)
<latexit sha1_base64="6PcgH3UU+xMDla36dTl8WP4Sn+c=">AAACT3icbVHLSgMxFM3UV1tfVZduQqWgqGVGFwoiFN24rGBtoTMOmTRjg5kHyR2xDPMXfpYb3fU33LhQxPShVOuFwDnnnktuTrxYcAWm2TdyM7Nz8wv5QnFxaXlltbS2fq2iRFLWoJGIZMsjigkesgZwEKwVS0YCT7Cmd3c+6DfvmVQ8Cq+gFzMnILch9zkloCW35FfsgEDX89OuyzN8itsT/MbPTiaplznFH565XNt914YuA7I9oad838r2voUHbdxxS1tm1RwWngbWGGzVyvbuY7/Wq7ulF7sT0SRgIVBBlGpbZgxOSiRwKlhWtBPFYkLvyC1raxiSgCknHeaR4YpWOtiPpD4h4KE6OZGSQKle4GnnYEn1tzcQ/+u1E/CPnZSHcQIspKOL/ERgiPAgXNzhklEQPQ0IlVzvimmXSEJBf0FRh2D9ffI0uD6oWofVg0udxhkaVR5tojLaRhY6QjV0geqogSh6Qq/oHX0Yz8ab8ZkbW3PGGGygX5UrfAFM1rg2</latexit>

inputprevious state

new state

function
parametrized by 𝜃

X

Y

RNN

‣ Simple vanilla RNN (Elman, 1990)

 117

Vanilla RNN

hi = f✓(hi�1,xi)
<latexit sha1_base64="6PcgH3UU+xMDla36dTl8WP4Sn+c=">AAACT3icbVHLSgMxFM3UV1tfVZduQqWgqGVGFwoiFN24rGBtoTMOmTRjg5kHyR2xDPMXfpYb3fU33LhQxPShVOuFwDnnnktuTrxYcAWm2TdyM7Nz8wv5QnFxaXlltbS2fq2iRFLWoJGIZMsjigkesgZwEKwVS0YCT7Cmd3c+6DfvmVQ8Cq+gFzMnILch9zkloCW35FfsgEDX89OuyzN8itsT/MbPTiaplznFH565XNt914YuA7I9oad838r2voUHbdxxS1tm1RwWngbWGGzVyvbuY7/Wq7ulF7sT0SRgIVBBlGpbZgxOSiRwKlhWtBPFYkLvyC1raxiSgCknHeaR4YpWOtiPpD4h4KE6OZGSQKle4GnnYEn1tzcQ/+u1E/CPnZSHcQIspKOL/ERgiPAgXNzhklEQPQ0IlVzvimmXSEJBf0FRh2D9ffI0uD6oWofVg0udxhkaVR5tojLaRhY6QjV0geqogSh6Qq/oHX0Yz8ab8ZkbW3PGGGygX5UrfAFM1rg2</latexit>

RNN: example instantiation
of function

parametrized by 𝜃

̂yt = Wht + b
h = g(Vxt + Uht−1)

 118

Summary of Views:

Illustrations by G.Neubig, 2018 http://www.phontron.com/class/mtandseq2seq2018/assets/slides/mt-fall2018.chapter6.pdf

http://www.phontron.com/class/mtandseq2seq2018/assets/slides/mt-fall2018.chapter6.pdf

RNN Language Model

 120

Training a RNN LM

̂yt = softmax(Wht + b) ∈ ℝ|V|

ht = g(Vxt + Uht−1 + c)

h0

h1 h2

ŷ1 ŷ2

h3

ŷ3

h4

ŷ4

y1

cost

y2

cost

y2

cost

y4

cost

F

See Yoav Goldberg’s book Sec.2.7.1

the cats of Athens

predicted prob
distributions

neg log prob of w

true word  
(one-hot)

LCE(ŷ, y) = − ∑
i

yilog(̂yi)

LCEhard
(ŷ, y) = − log(̂yi)

sum over all costs

 121

What about these issues?

‣ Can it handle similar words?

‣ she bought a bicycle

‣ she purchased a bicycle  

‣ Long-distance dependencies?

‣ for programming she yesterday purchased her own brand new laptop

‣ for running she yesterday purchased her brand new sportswatch

However, in practice the vanilla RNN
has some trouble.. more soon

 122

Generate with a RNN LM - some fun!

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

character-level RNN-LM

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

 123

Generate with a RNN LM - some fun!

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

‣ LM: a model that predicts the next word

‣ RNN: a family of neural networks

‣ to model sequential input of any length

‣ apply the same parameters on each time step

‣ can optionally produce output at each time step

‣ RNN’s are great as LMs. But they can be used for much
more!

 124

RNNs - Interim summary

Common Usage
Patterns

‣ Use last state to predict y

‣ sentence encoding

‣ Calculate loss and backprob

 126

Example: An RNN as acceptor

loss (pred_y, y)

‣ Use average of states to predict y

‣ other sentence encoding

 127

Example: An RNN as acceptor

take element-wise max  
or mean of hidden states

‣ Use last state as encoding of the information in the
sequence; use as “feature” in other NN

‣ encode, not predict

‣ E.g. character RNN

 128

Example: An RNN as encoder

 129

RNN as Transducer

many to manyIllustration adapted from Karpathy

‣ predict an output  
for each  
time step t

‣ E.g. Tagging 
(POS, NER)

loss loss loss

sum

total loss

BiLSTM BiLSTM BiLSTM

DET ADJ NOUN

cat
char

BiLSTMred
char

BiLSTM
the

char
BiLSTM

t h e c a tr e d

Combining them - a hierarchical RNN:
Example for POS

(Plank et al., 2016)

‣ Use RNN transducer and lower-level RNN encoder for
characters (more in a second)

character-level
encoder

RNN transducer

 131

RNN as generator

one to many

Illustration adapted from Karpathy

‣ Conditional  
generation

‣ E.g. image 
caption generation,  
speech synthesis

 132

RNN encoder-decoder (seq2seq)

many to many

Illustration adapted from Karpathy

‣ Both input and output  
are a sequence

Deeper, better
models?

The person who hunts ducks out on the weekends

 134

Only left to right?

… person who hunts ducks out …

… …

Example adapted from Rao & McMahan, 2018 https://en.wikipedia.org/wiki/Garden-path_sentence

https://en.wikipedia.org/wiki/Garden-path_sentence

 135

Bidirectional RNNs

… person who hunts ducks out …

… …

… …

hf
i

<latexit sha1_base64="iS30of6ZdSpPCYuUGAQgdC/S7z0=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae005JJM21oJhmSjFKG/ocbF4q49V/c+Tdm2llo64HA4Zx7uScniDnTxnW/ncLa+sbmVnG7tLO7t39QPjxqaZkoQptEcqk6AdaUM0GbhhlOO7GiOAo4bQeT28xvP1KlmRQPZhpTP8IjwUJGsLFSvxdhMw7CdDxg/XA2KFfcqjsHWiVeTiqQozEof/WGkiQRFYZwrHXXc2Pjp1gZRjidlXqJpjEmEzyiXUsFjqj203nqGTqzyhCFUtknDJqrvzdSHGk9jQI7maXUy14m/ud1ExNe+ykTcWKoIItDYcKRkSirAA2ZosTwqSWYKGazIjLGChNjiyrZErzlL6+SVq3qXVRr95eV+k1eRxFO4BTOwYMrqMMdNKAJBBQ8wyu8OU/Oi/PufCxGC06+cwx/4Hz+AOUVksQ=</latexit>

hb
i

<latexit sha1_base64="mA/F9MxaZO20CFcJ3CLEbA4Z+B4=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae005JJM21oJhmSjFKG/ocbF4q49V/c+Tdm2llo64HA4Zx7uScniDnTxnW/ncLa+sbmVnG7tLO7t39QPjxqaZkoQptEcqk6AdaUM0GbhhlOO7GiOAo4bQeT28xvP1KlmRQPZhpTP8IjwUJGsLFSvxdhMw7CdDxg/WA2KFfcqjsHWiVeTiqQozEof/WGkiQRFYZwrHXXc2Pjp1gZRjidlXqJpjEmEzyiXUsFjqj203nqGTqzyhCFUtknDJqrvzdSHGk9jQI7maXUy14m/ud1ExNe+ykTcWKoIItDYcKRkSirAA2ZosTwqSWYKGazIjLGChNjiyrZErzlL6+SVq3qXVRr95eV+k1eRxFO4BTOwYMrqMMdNKAJBBQ8wyu8OU/Oi/PufCxGC06+cwx/4Hz+AN8BksA=</latexit>

hi = [hf
i ;h

b
i]

<latexit sha1_base64="fMZo9jjic+o/Hk2rcrJHhon4av0=">AAACF3icbVDLSsNAFJ3UV62vqEs3Q4sgCCGpCwURim5cVrAPaGKYTCft0MmDmYkQQv6iG3/FjQtF3Oquf+Ok7aK2Hhg495x7mXuPFzMqpGlOtNLa+sbmVnm7srO7t3+gHx61RZRwTFo4YhHvekgQRkPSklQy0o05QYHHSMcb3RV+55lwQaPwUaYxcQI0CKlPMZJKcnXDDpAcen42dGkOb2BvoX7y8+vF0ssdV6+ZhjkFXCXWnNQaVft8PGmkTVf/sfsRTgISSsyQED3LjKWTIS4pZiSv2IkgMcIjNCA9RUMUEOFk07tyeKqUPvQjrl4o4VRdnMhQIEQaeKqzWFMse4X4n9dLpH/lZDSME0lCPPvITxiUESxCgn3KCZYsVQRhTtWuEA8RR1iqKCsqBGv55FXSrhvWhVF/UGncghnK4ARUwRmwwCVogHvQBC2AwRi8gnfwob1ob9qn9jVrLWnzmWPwB9r3L+Hko1w=</latexit>

‣ Multiple layers of RNNs, e.g., bi-RNNs

 136

Stacked RNNs

<w>

b

y

</w>a letter

O TEXT O

~w ~c

by

Guards against the long
tail?  

Subword representations

‣ So far we saw <UNK>

‣ But that conflates a lot of information into a single
<UNK> representations

‣ Are we better of modeling at the subword level?

 138

OOVs (out-of-vocabulary) words

Subword representations: Characters

(Plank et al., 2016 for POS;  
Ling et al., 2015 for NER)

<w>
c
a
t
s

</w>

Juli loves cats

PROPN VERB NOUN

~w ~c

bi* (85% noun
in Danish)

*able (98% adj
in WSJ)

‣ Representations:

‣ Characters

‣ Bytes (e.g., Gillick et al., 2015; Plank et al., 2016)

‣ Byte-Pair Encoding (BPE) (Sennerich et al., 2016)

‣ Modeling choices:

‣ RNN-variants, CNNs,…

‣ How to leverage the representations (only char level,
combine, …)

 140

How to model subwords?

 141

Overview

Motivation,  
Brief History, Overview

foundations

representations

beyond FFNNs

Back to the roots:  
Language Models

 Feedforward NNs
(FFNNs)

What’s the input?
Representations

Convolutional Neural
Networks (CNNs)

Recurrent Neural
Network (RNNs)

Advanced RNNs,
Decoders

‣ RNN = “vanilla” RNN

‣ RNN flavors (=gated RNNs):

‣ GRU and LSTMs

‣ Why? Problem of RNNs: Vanishing gradients!

 142

A note on terminology

Gated RNN
architectures

‣ Example:

‣ The cat, which ate a …., was full

‣ The cats, which … , were full

‣ Backprop can have difficulties with long sequences:
vanishing gradient problem

‣ if the gradient becomes very close to zero:

‣ is it because there is no dependency in the data?

‣ or because of a wrong configuration of the
parameters—the vanishing gradient condition?

 144

Vanishing Gradient

‣ Easier to catch. If the gradient becomes to big, then the
SGD update becomes very large: 
 
 

‣ This might cause bad updates: too large updates, large loss

‣ In the worst case, you might get NaNs or Infs

‣ Solution: gradient clipping (scale down before update)

 145

Exploding Gradients

 146

Vanishing Gradient

Slide by Abigail See

 147

Why is Vanishing Gradient a problem?

Slide by Abigail See

‣ LM task:  
 
“When she bought her laptop, she found that the keyboard
layout was Danish. She went back to the shop to ask if the
owner of the shop had another keyboard layout.
Unfortunately this was not the case, so she kept the ____” 

‣ Model needs to learn a dependency to “laptop”

‣ But if the gradients are small, the model won’t learn this

‣ RNNs are better at syntactic recency [Linzen et al., 2016]

 148

Effect of vanishing gradient

 149

RNN unit

h = tanh(Vxt + Uht−1 + b)

tanh

ht−1

xt

softmax

ŷt

ht

hi = f✓(hi�1,xi)
<latexit sha1_base64="6PcgH3UU+xMDla36dTl8WP4Sn+c=">AAACT3icbVHLSgMxFM3UV1tfVZduQqWgqGVGFwoiFN24rGBtoTMOmTRjg5kHyR2xDPMXfpYb3fU33LhQxPShVOuFwDnnnktuTrxYcAWm2TdyM7Nz8wv5QnFxaXlltbS2fq2iRFLWoJGIZMsjigkesgZwEKwVS0YCT7Cmd3c+6DfvmVQ8Cq+gFzMnILch9zkloCW35FfsgEDX89OuyzN8itsT/MbPTiaplznFH565XNt914YuA7I9oad838r2voUHbdxxS1tm1RwWngbWGGzVyvbuY7/Wq7ulF7sT0SRgIVBBlGpbZgxOSiRwKlhWtBPFYkLvyC1raxiSgCknHeaR4YpWOtiPpD4h4KE6OZGSQKle4GnnYEn1tzcQ/+u1E/CPnZSHcQIspKOL/ERgiPAgXNzhklEQPQ0IlVzvimmXSEJBf0FRh2D9ffI0uD6oWofVg0udxhkaVR5tojLaRhY6QjV0geqogSh6Qq/oHX0Yz8ab8ZkbW3PGGGygX5UrfAFM1rg2</latexit>

At each time step, the
hidden state is updated:

in a vanilla RNN 
the hidden state is
constantly being

rewritten

Gated RNN architectures:
RNN flavors with a
separate memory

 151

GRU (Gated recurrent Unit) - simplified

tanh

xt

softmax

ŷt

ct

c̃ = tanh(Ucxt + Wcct−1 + bc)

‣ Cho et al. (2014) - key idea: dynamic memory update c (h=c)

‣ at every step t, consider overwriting candidate memory c

ct−1
γU = σ(UUxt + WUct−1 + bU)

“update” gate

candidate for overwriting cell

ct = γU ⊙ c̃ + (1 − γU) ⊙ ct−1

σ

c̃ γU

“choose which bits to update”

element-wise multiplication
update if gamma_U > 0

sigmoid gate: values
between 0 and 1

 152

GRU (Gated recurrent Unit) - full

c̃ = tanh(Ucxt + Wc(γR ⊙ ct−1) + bc)

ct = γU ⊙ c̃ + (1 − γU) ⊙ ct−1

γR = σ(URxt + WRct−1 + bR)

‣ GRU: creates “adaptive” connections

‣ perhaps prune some unnecessary connections adaptively

Update gate: controls what
parts of the hidden state are

updated vs preserved

Reset gate: controls what parts
of the previous hidden state are
used to compute new content

γU = σ(UUxt + WUct−1 + bU)

How does this help the vanishing gradient problem? 
GRUs make it easier to retain info long-term (e.g. by not updating bits)

"Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation", Cho et al. 2014, https://arxiv.org/pdf/1406.1078v3.pdf

Slide inspired by Abigail See

all vectors of same size

 153

LSTM (Long-Short Term Memory)

‣ Introduced by Hochreiter & Schmidhuber 1997

‣ Separate memory cell c and hidden state h

‣ Three gates:

‣ forget gate: controls what is kept and forgotten from previous
cell state

‣ input gate: controls what part of the new cell content are
written to the cell

‣ output gate: controls what part of the new cell content are
written to the hidden state

 154

LSTM (Long-Short Term Memory)

Slide by Abigail See

 155

LSTM (Long-Short Term Memory)

Slide by Abigail See

‣ GRU is more efficient to learn (fewer parameters)

‣ Which is better?

‣ No conclusive evidence that one is always superior to
the other

‣ LSTM is typically a good starting choice

‣ Suggestion: switch to GRU if you want a more efficient
model

 156

GRU vs LSTM

‣ Is the vanishing gradient problem specific to RNNs?

‣ No! Also for deep FFNN and ConvNets

‣ Solution: add direct “skip” connections (ResNet, residual
connections) - proposed by He et al., (2015)

‣ i.e. add F(x) + x, instead of F(x)

‣ allows for training deeper models

 157

Residual connections

https://arxiv.org/pdf/1512.03385.pdf

LSTMs are everywhere…

Let’s look briefly at different
decoders via examples

BiLSTM BiLSTM BiLSTM

DET ADJ NOUN

cat
char

BiLSTMred
char

BiLSTM
the

char
BiLSTM

t h e c a tr e d

A very common POS tagger

‣ Use bi-LSTM transducer with a lower-level bi-LSTM
encoder for characters and a softmax decoder

character-level
encoder

RNN transducer

MLP decoder

Ac
cu

ra
cy

90.0

92.5

95.0

97.5

100.0

English Indoeuropean Non-Indo. Germanic Romance Slavic

TnT (HMM) bi-LSTM words bi-LSTM chars words+characters

17 coarse POS tags,  
experiments over 22 languages of UD 1.2, (Plank et al., 2016) 161

the pow
er of

subwor
d repre

sentati
ons

POS tagging on many languages

A closer look at non-IE languages

typology by
(Vania & Lopez, 2017)

 162

‣ Example:

‣ (Huang et al., 2015): from RNN to bidirectional LSTM-CRF

 163

Named Entity Recognition (NER)

CRF decoderMLP decoder

Bill B-PER lives in Athens B-LOC

Softmax over all possible tag sequences Y;  
dynamic programming

‣ Stronger sequential nature (e.g., I-PER after B-PER) 
 
 
 
Lample et al., (2016):

 164

CRF decoder

Bill B-PER lives in Athens B-LOCDoe I-PER

P: output of bi-LSTM projected onto
hidden layer (of size n x k) - 

Pij: score of jth tag for i-th word 
 

P is input to the CRF layer

CRF maintains matrix A: transition scores
matrix (k x k tags plus start/end)-  

Aij score from tag i to j

‣ The model so far is restricted to subwords to within words

‣ Recent SOTA model

‣ context-sensitive  
character and  
word representations

‣ Models trained  
synchronously &  
then combined 

Meta-BiLSTM

(Bohnet et al., 2018)

http://nlpprogress.com/english/part-of-speech_tagging.html

 166

Google’s Neural MT System  
(Wu et al., 2016)

https://arxiv.org/pdf/1609.08144.pdf

‣ deep bidirectional 
LSTM (stacked) with
residual connections
and attention

‣ huge improvements
in MT quality

‣ Now (2019 onwards): other approaches have become dominant for
certain NLP tasks (e.g. the Transformer) - see more on Monday (Arianna)

https://arxiv.org/pdf/1609.08144.pdf
https://arxiv.org/pdf/1609.08144.pdf

‣ RNNs:

‣ Two fancy variants: LSTM and GRU  
to address the vanishing gradient problem

‣ Deep RNNs (stacking)

‣ Residual connections

‣ Two more concepts to cover:

‣ beyond static word embeddings

‣ gluing it all together: attention!

 167

Interim summary

 168

Overview

Motivation,  
Brief History, Overview

foundations

representations

beyond FFNNs

Back to the roots:  
Language Models

 Feedforward NNs
(FFNNs)

What’s the input?
Representations

Convolutional Neural
Networks (CNNs)

Recurrent Neural
Network (RNNs)

Advanced RNNs,
Decoders

Contextualized
Embeddings, Fine-tuning

Traditional (“static”)
word embeddings

compress all contexts into a single vector

Contextualized  
word embeddings

‣ Problem:

‣ It is a type-based representation: always the same vector
for a word regardless of its context (e.g. ‘ducks’)

‣ Polysemy is not handled  
 
 
 
 

‣ Solution: Contextualized embeddings

‣ Learn a vector that depends on the context

 171

Representing a word as vector so far

ducksShe sees
=

ducksShe

Language Models to
the rescue!

Src: Wikipedia
Peters et al., NAACL 2018

‣ Neural LMs embed the left and right context of a word

‣ We can use a bi-directional LM with the forward and the
backward LSTM states 
 
 
 
 

‣ Key Idea: Learn word token vectors (not type!) using long
contexts (not only context windows)

‣ ELMO uses a “deep” model to get different encodings (or
“views”) from stacked RNNs

 173

ELMo:  
Embeddings as Language Models

Embeddings from Language Models
(λ2*)

 174

BiLSTM

C

BiLSTM

C

BiLSTM

C

BiLSTM

C

BiLSTM

C

whoperson ducks out …on…

ELMo

BiLSTM BiLSTM BiLSTM BiLSTM BiLSTM

BiLSTM BiLSTM BiLSTM BiLSTM BiLSTM

= + +(λ1*) (λ3*)

‣ ELMo: every token is assigned a representation that is a
function of the entire input sentence (L=#stacked layers) 
 
 

‣ This gives 2L+1 representations - Which to use?

‣ Just the top layer (similar to TagLM; Peters et al., 2017)

‣ Include all L+1 layers, average

‣ All layers, weighted average (best)

 175

ELMo - Details

‣ Recipe: For a given instance

‣ Run biLM to get the representations for each word

‣ Concatenate ELMo embeddings into task-specific
model, e.g.,

‣ as additional input to static word embeddings

‣ as additional hidden representation

‣ … many choices, best might depend on end task

 176

How to use ELMo for your task?

Results over 6 NLP benchmarks

0

25

50

75

100

SQUAD SNLI SRL Coref NER SST-5

54.7

92.2

70.4

84.6
88.7

85.8

51.4

90.2

67.2

81.4

88.0

81.1

F1 F1 F1avg F1 accuracyaccuracy

Peters et al., NAACL 2018

‣ ELMo is deeper compared to an earlier model  
by Peters et al., 2017 ACL (TagLM)

‣ It doesn’t require parallel data (as CoVe does) by  
McCann et al., 2017 NeurIPS

‣ CoVe: use NMT as encoder (translation is meant to
preserve meaning, so why not use it to provide context?)

‣ It obtained a new SOTA on 6 benchmarks

 178

Is ELMo the first such model? No!

What’s in a
representation?

‣ What do ELMo
representations capture?

‣ Word Sense
Disambiguation (WSD)

‣ Part-of-Speech tagging
(POS)

‣ Finding: Different layers
encode different kinds of
syntactic and semantic
information

 180

Probing ELMo representations

0

25

50

75

100

WSD POS

96.8

69.0

97.3

67.4

first layer second layer

(Selected related work): Tenney et al., 2019 ACL; Liu et al., 2019 NAACL
Belinkov & Glass, 2019 TAC

https://arxiv.org/abs/1905.05950
https://www.aclweb.org/anthology/N19-1112
https://transacl.org/ojs/index.php/tacl/article/view/1570

‣ A news corpus of 1B words: the 1-billion word language
modeling benchmark (Chelba et al., 2014)

‣ ELMo can compute representations for any task

‣ In some cases, fine-tuning ELMo on domain-specific data
leads to increased downstream performance

 181

On what was ELMo trained?

1B words train domain
specific

train

Fine-tuning: train on large data, continue training on small data (reuse weights)

 182

Fine-tuning: One way of 
Transfer Learning

Model A Model B

Transfer Learning

Knowledge gained  
to help solve  

a related problem

Language models learn
transferable contextual

representations

‣ unsupervised

‣ contextual

‣ deep

‣ character-based

‣ extremely versatile (new type of word representation) 
 

‣ Many follow-up words, most of which rely on the
transformer model (Lecture 4), e.g., BERT

 184

To sum up: ELMo properties

‣ From Ruder et al.’s 2019 NAACL tutorial

 185

NLP Progress on NER

Performance on Named Entity Recognition (NER) on CoNLL-2003 (English) over time

https://docs.google.com/presentation/d/1fIhGikFPnb7G5kr58OvYC3GN4io7MznnM0aAgadvJfc/edit#slide=id.g5888218f39_16_23

 186

Overview

Motivation,  
Brief History, Overview

foundations

representations

beyond FFNNs

Back to the roots:  
Language Models

 Feedforward NNs
(FFNNs)

What’s the input?
Representations

Convolutional Neural
Networks (CNNs)

Recurrent Neural
Network (RNNs)

Advanced RNNs,
Decoders

Attention? Attention!

Contextualized
Embeddings, Fine-tuning

Attention? Attention!

Many thanks to Lilian Weng for an awesome tutorial (https://lilianweng.github.io/lil-log/
2018/06/24/attention-attention.html) and Graham Neubig’s NN for NLP class (http://

www.phontron.com/class/nn4nlp2019/)

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
http://www.phontron.com/class/nn4nlp2019/
http://www.phontron.com/class/nn4nlp2019/

Motivation: Encoder-decoder model

Der Film ist langweilig

Encoder

The

argmax

The

movie

argmax argmax

is

argmax

boring

movie is

argmax

</s>

boring

Decoder

sentence or
“thought” vector

(Sutskever et al., 2014; Cho et al., 2014)

‣ Initialize decoder with encoder representation (Sutskever et
al., 2014) 
 
 

‣ Transform (change dimensionality)  
 
 

‣ Input at every time step  
(Kalchbrenner & Blunsom, 2013)

 189

How to pass the sentence vector?

copy

transform

yt-1 yi+1

But: we’re cramming it all into..

Der Film ist langweilig

Encoder

The

argmax

The

movie

argmax argmax

is

argmax

boring

movie is

argmax

</s>

boring

a single $&!*ing
vector!

Decoder

‣ The encoder compresses the sentence into a single fixed-
size vector. This representation is expected to be a good
summary of the entire sentence.

‣ Disadvantage: incapability of remembering longer
sequences.

‣ “You can’t cram the meaning of a of a whole %&!$ing
sentence into a single $&!*ing vector!” — Ray Mooney

 191

Problem

‣ What if we could use several vectors, based on the length
of the input sequence?

‣ Idea: when we generate the next word in MT, perhaps we
can learn to attend to the relevant source words

 192

Beyond a single static “crammed” vector

the cat is black

the cat is black

Encoder

Encoder

encoder hidden states

h1
<latexit sha1_base64="hFxO5UtyO5a/QEoP47g0JAPJpqM=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+4B2KJn0ThuayYxJplCGfocbF4q49WPc+Tdm2i609UDgcM693JMTJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0l/utMSrNY/loJgn6ER1IHnJGjZX8bkTNMAizYc+bkl6p7FbcGcgq8RakDAvUe6Wvbj9maYTSMEG17nhuYvyMKsOZwGmxm2pMKBvRAXYslTRC7Wez0FNybpU+CWNlnzRkpv7eyGik9SQK7GQeUi97ufif10lNeONnXCapQcnmh8JUEBOTvAHS5wqZERNLKFPcZiVsSBVlxvZUtCV4y19eJc1qxbusVB+uyrXbRR0FOIUzuAAPrqEG91CHBjB4gmd4hTdn7Lw4787HfHTNWeycwB84nz9tDJHe</latexit>

h2
<latexit sha1_base64="/BvkXpFuk0AFjRAcO9/abxcFgR0=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+4B2KJk004ZmMmNyp1CGfocbF4q49WPc+Tdm2i609UDgcM693JMTJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju9xvjbk2IlaPOEm4H9GBEqFgFK3kdyOKwyDMhr3qlPRKZbfizkBWibcgZVig3it9dfsxSyOukElqTMdzE/QzqlEwyafFbmp4QtmIDnjHUkUjbvxsFnpKzq3SJ2Gs7VNIZurvjYxGxkyiwE7mIc2yl4v/eZ0Uwxs/EypJkSs2PxSmkmBM8gZIX2jOUE4soUwLm5WwIdWUoe2paEvwlr+8SprVindZqT5clWu3izoKcApncAEeXEMN7qEODWDwBM/wCm/O2Hlx3p2P+eias9g5gT9wPn8AbpKR3w==</latexit>

h3
<latexit sha1_base64="jv9F9hQc7z2SNPpV1QfhwkTepGg=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsy0gi6LblxWsA9oh5JJM21okhmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS1lGiCG2RiEeqG2BNOZO0ZZjhtBsrikXAaSeY3GV+Z0qVZpF8NLOY+gKPJAsZwcZKfl9gMw7CdDyoz9GgXHGr7gJonXg5qUCO5qD81R9GJBFUGsKx1j3PjY2fYmUY4XRe6ieaxphM8Ij2LJVYUO2ni9BzdGGVIQojZZ80aKH+3kix0HomAjuZhdSrXib+5/USE974KZNxYqgky0NhwpGJUNYAGjJFieEzSzBRzGZFZIwVJsb2VLIleKtfXiftWtWrV2sPV5XGbV5HEc7gHC7Bg2towD00oQUEnuAZXuHNmTovzrvzsRwtOPnOKfyB8/kDcBiR4A==</latexit>

h4
<latexit sha1_base64="+YLzsEr/4HtFuWfk3EuOEKujH9g=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWZqQZdFNy4r2Ae0Q8mkmTY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck+OHwuujeN8o8LG5tb2TnG3tLd/cHhUPj5p6yhRlLVoJCLV9YlmgkvWMtwI1o0VI6EvWMef3GV+Z8qU5pF8NLOYeSEZSR5wSoyVvH5IzNgP0vGgPseDcsWpOgvgdeLmpAI5moPyV38Y0SRk0lBBtO65Tmy8lCjDqWDzUj/RLCZ0QkasZ6kkIdNeugg9xxdWGeIgUvZJgxfq742UhFrPQt9OZiH1qpeJ/3m9xAQ3XsplnBgm6fJQkAhsIpw1gIdcMWrEzBJCFbdZMR0TRaixPZVsCe7ql9dJu1Z1r6q1h3qlcZvXUYQzOIdLcOEaGnAPTWgBhSd4hld4Q1P0gt7Rx3K0gPKdU/gD9PkDcZ6R4Q==</latexit>

h4
<latexit sha1_base64="+YLzsEr/4HtFuWfk3EuOEKujH9g=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWZqQZdFNy4r2Ae0Q8mkmTY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck+OHwuujeN8o8LG5tb2TnG3tLd/cHhUPj5p6yhRlLVoJCLV9YlmgkvWMtwI1o0VI6EvWMef3GV+Z8qU5pF8NLOYeSEZSR5wSoyVvH5IzNgP0vGgPseDcsWpOgvgdeLmpAI5moPyV38Y0SRk0lBBtO65Tmy8lCjDqWDzUj/RLCZ0QkasZ6kkIdNeugg9xxdWGeIgUvZJgxfq742UhFrPQt9OZiH1qpeJ/3m9xAQ3XsplnBgm6fJQkAhsIpw1gIdcMWrEzBJCFbdZMR0TRaixPZVsCe7ql9dJu1Z1r6q1h3qlcZvXUYQzOIdLcOEaGnAPTWgBhSd4hld4Q1P0gt7Rx3K0gPKdU/gD9PkDcZ6R4Q==</latexit>

‣ When decoding, perform a linear combination of the
encoded input vectors, weighted by “attention weights”

 193

StSt-1

yt+

h1
<latexit sha1_base64="hFxO5UtyO5a/QEoP47g0JAPJpqM=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+4B2KJn0ThuayYxJplCGfocbF4q49WPc+Tdm2i609UDgcM693JMTJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0l/utMSrNY/loJgn6ER1IHnJGjZX8bkTNMAizYc+bkl6p7FbcGcgq8RakDAvUe6Wvbj9maYTSMEG17nhuYvyMKsOZwGmxm2pMKBvRAXYslTRC7Wez0FNybpU+CWNlnzRkpv7eyGik9SQK7GQeUi97ufif10lNeONnXCapQcnmh8JUEBOTvAHS5wqZERNLKFPcZiVsSBVlxvZUtCV4y19eJc1qxbusVB+uyrXbRR0FOIUzuAAPrqEG91CHBjB4gmd4hTdn7Lw4787HfHTNWeycwB84nz9tDJHe</latexit>

h2
<latexit sha1_base64="/BvkXpFuk0AFjRAcO9/abxcFgR0=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+4B2KJk004ZmMmNyp1CGfocbF4q49WPc+Tdm2i609UDgcM693JMTJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju9xvjbk2IlaPOEm4H9GBEqFgFK3kdyOKwyDMhr3qlPRKZbfizkBWibcgZVig3it9dfsxSyOukElqTMdzE/QzqlEwyafFbmp4QtmIDnjHUkUjbvxsFnpKzq3SJ2Gs7VNIZurvjYxGxkyiwE7mIc2yl4v/eZ0Uwxs/EypJkSs2PxSmkmBM8gZIX2jOUE4soUwLm5WwIdWUoe2paEvwlr+8SprVindZqT5clWu3izoKcApncAEeXEMN7qEODWDwBM/wCm/O2Hlx3p2P+eias9g5gT9wPn8AbpKR3w==</latexit>

h3
<latexit sha1_base64="jv9F9hQc7z2SNPpV1QfhwkTepGg=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsy0gi6LblxWsA9oh5JJM21okhmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS1lGiCG2RiEeqG2BNOZO0ZZjhtBsrikXAaSeY3GV+Z0qVZpF8NLOY+gKPJAsZwcZKfl9gMw7CdDyoz9GgXHGr7gJonXg5qUCO5qD81R9GJBFUGsKx1j3PjY2fYmUY4XRe6ieaxphM8Ij2LJVYUO2ni9BzdGGVIQojZZ80aKH+3kix0HomAjuZhdSrXib+5/USE974KZNxYqgky0NhwpGJUNYAGjJFieEzSzBRzGZFZIwVJsb2VLIleKtfXiftWtWrV2sPV5XGbV5HEc7gHC7Bg2towD00oQUEnuAZXuHNmTovzrvzsRwtOPnOKfyB8/kDcBiR4A==</latexit>

h4
<latexit sha1_base64="+YLzsEr/4HtFuWfk3EuOEKujH9g=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWZqQZdFNy4r2Ae0Q8mkmTY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck+OHwuujeN8o8LG5tb2TnG3tLd/cHhUPj5p6yhRlLVoJCLV9YlmgkvWMtwI1o0VI6EvWMef3GV+Z8qU5pF8NLOYeSEZSR5wSoyVvH5IzNgP0vGgPseDcsWpOgvgdeLmpAI5moPyV38Y0SRk0lBBtO65Tmy8lCjDqWDzUj/RLCZ0QkasZ6kkIdNeugg9xxdWGeIgUvZJgxfq742UhFrPQt9OZiH1qpeJ/3m9xAQ3XsplnBgm6fJQkAhsIpw1gIdcMWrEzBJCFbdZMR0TRaixPZVsCe7ql9dJu1Z1r6q1h3qlcZvXUYQzOIdLcOEaGnAPTWgBhSd4hld4Q1P0gt7Rx3K0gPKdU/gD9PkDcZ6R4Q==</latexit>

query vector

key vectors

Attention: Core Idea

(Bahdanau et al., 2015)

ct
context vector

1. For each query-key pair, calculate an attention score (ai)

2. Get an attention distribution  
via softmax normalization (𝜶i)

 194

St

yt

h1
<latexit sha1_base64="hFxO5UtyO5a/QEoP47g0JAPJpqM=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+4B2KJn0ThuayYxJplCGfocbF4q49WPc+Tdm2i609UDgcM693JMTJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0l/utMSrNY/loJgn6ER1IHnJGjZX8bkTNMAizYc+bkl6p7FbcGcgq8RakDAvUe6Wvbj9maYTSMEG17nhuYvyMKsOZwGmxm2pMKBvRAXYslTRC7Wez0FNybpU+CWNlnzRkpv7eyGik9SQK7GQeUi97ufif10lNeONnXCapQcnmh8JUEBOTvAHS5wqZERNLKFPcZiVsSBVlxvZUtCV4y19eJc1qxbusVB+uyrXbRR0FOIUzuAAPrqEG91CHBjB4gmd4hTdn7Lw4787HfHTNWeycwB84nz9tDJHe</latexit>

h2
<latexit sha1_base64="/BvkXpFuk0AFjRAcO9/abxcFgR0=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+4B2KJk004ZmMmNyp1CGfocbF4q49WPc+Tdm2i609UDgcM693JMTJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju9xvjbk2IlaPOEm4H9GBEqFgFK3kdyOKwyDMhr3qlPRKZbfizkBWibcgZVig3it9dfsxSyOukElqTMdzE/QzqlEwyafFbmp4QtmIDnjHUkUjbvxsFnpKzq3SJ2Gs7VNIZurvjYxGxkyiwE7mIc2yl4v/eZ0Uwxs/EypJkSs2PxSmkmBM8gZIX2jOUE4soUwLm5WwIdWUoe2paEvwlr+8SprVindZqT5clWu3izoKcApncAEeXEMN7qEODWDwBM/wCm/O2Hlx3p2P+eias9g5gT9wPn8AbpKR3w==</latexit>

h3
<latexit sha1_base64="jv9F9hQc7z2SNPpV1QfhwkTepGg=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsy0gi6LblxWsA9oh5JJM21okhmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS1lGiCG2RiEeqG2BNOZO0ZZjhtBsrikXAaSeY3GV+Z0qVZpF8NLOY+gKPJAsZwcZKfl9gMw7CdDyoz9GgXHGr7gJonXg5qUCO5qD81R9GJBFUGsKx1j3PjY2fYmUY4XRe6ieaxphM8Ij2LJVYUO2ni9BzdGGVIQojZZ80aKH+3kix0HomAjuZhdSrXib+5/USE974KZNxYqgky0NhwpGJUNYAGjJFieEzSzBRzGZFZIwVJsb2VLIleKtfXiftWtWrV2sPV5XGbV5HEc7gHC7Bg2towD00oQUEnuAZXuHNmTovzrvzsRwtOPnOKfyB8/kDcBiR4A==</latexit>

h4
<latexit sha1_base64="+YLzsEr/4HtFuWfk3EuOEKujH9g=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWZqQZdFNy4r2Ae0Q8mkmTY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck+OHwuujeN8o8LG5tb2TnG3tLd/cHhUPj5p6yhRlLVoJCLV9YlmgkvWMtwI1o0VI6EvWMef3GV+Z8qU5pF8NLOYeSEZSR5wSoyVvH5IzNgP0vGgPseDcsWpOgvgdeLmpAI5moPyV38Y0SRk0lBBtO65Tmy8lCjDqWDzUj/RLCZ0QkasZ6kkIdNeugg9xxdWGeIgUvZJgxfq742UhFrPQt9OZiH1qpeJ/3m9xAQ3XsplnBgm6fJQkAhsIpw1gIdcMWrEzBJCFbdZMR0TRaixPZVsCe7ql9dJu1Z1r6q1h3qlcZvXUYQzOIdLcOEaGnAPTWgBhSd4hld4Q1P0gt7Rx3K0gPKdU/gD9PkDcZ6R4Q==</latexit>

Calculating attention (1/2):  
Attention weights 𝜶

𝛼1=.79 𝛼2=.1 𝛼3=.05 𝛼4=-.03

key vectors

a(q, k)

a1=2.1 a2=0.1 a3=-0.5 a4=-1.0

a(q, k)a(q, k)a(q, k)

softmax

query vector

(Bahdanau et al., 2015)

3. Combine together value vectors (can be the encoder states,
like the key vectors) by taking the weighted sum to get c

 195

h1
<latexit sha1_base64="hFxO5UtyO5a/QEoP47g0JAPJpqM=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+4B2KJn0ThuayYxJplCGfocbF4q49WPc+Tdm2i609UDgcM693JMTJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0l/utMSrNY/loJgn6ER1IHnJGjZX8bkTNMAizYc+bkl6p7FbcGcgq8RakDAvUe6Wvbj9maYTSMEG17nhuYvyMKsOZwGmxm2pMKBvRAXYslTRC7Wez0FNybpU+CWNlnzRkpv7eyGik9SQK7GQeUi97ufif10lNeONnXCapQcnmh8JUEBOTvAHS5wqZERNLKFPcZiVsSBVlxvZUtCV4y19eJc1qxbusVB+uyrXbRR0FOIUzuAAPrqEG91CHBjB4gmd4hTdn7Lw4787HfHTNWeycwB84nz9tDJHe</latexit>

h2
<latexit sha1_base64="/BvkXpFuk0AFjRAcO9/abxcFgR0=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+4B2KJk004ZmMmNyp1CGfocbF4q49WPc+Tdm2i609UDgcM693JMTJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju9xvjbk2IlaPOEm4H9GBEqFgFK3kdyOKwyDMhr3qlPRKZbfizkBWibcgZVig3it9dfsxSyOukElqTMdzE/QzqlEwyafFbmp4QtmIDnjHUkUjbvxsFnpKzq3SJ2Gs7VNIZurvjYxGxkyiwE7mIc2yl4v/eZ0Uwxs/EypJkSs2PxSmkmBM8gZIX2jOUE4soUwLm5WwIdWUoe2paEvwlr+8SprVindZqT5clWu3izoKcApncAEeXEMN7qEODWDwBM/wCm/O2Hlx3p2P+eias9g5gT9wPn8AbpKR3w==</latexit>

h3
<latexit sha1_base64="jv9F9hQc7z2SNPpV1QfhwkTepGg=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsy0gi6LblxWsA9oh5JJM21okhmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS1lGiCG2RiEeqG2BNOZO0ZZjhtBsrikXAaSeY3GV+Z0qVZpF8NLOY+gKPJAsZwcZKfl9gMw7CdDyoz9GgXHGr7gJonXg5qUCO5qD81R9GJBFUGsKx1j3PjY2fYmUY4XRe6ieaxphM8Ij2LJVYUO2ni9BzdGGVIQojZZ80aKH+3kix0HomAjuZhdSrXib+5/USE974KZNxYqgky0NhwpGJUNYAGjJFieEzSzBRzGZFZIwVJsb2VLIleKtfXiftWtWrV2sPV5XGbV5HEc7gHC7Bg2towD00oQUEnuAZXuHNmTovzrvzsRwtOPnOKfyB8/kDcBiR4A==</latexit>

h4
<latexit sha1_base64="+YLzsEr/4HtFuWfk3EuOEKujH9g=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWZqQZdFNy4r2Ae0Q8mkmTY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck+OHwuujeN8o8LG5tb2TnG3tLd/cHhUPj5p6yhRlLVoJCLV9YlmgkvWMtwI1o0VI6EvWMef3GV+Z8qU5pF8NLOYeSEZSR5wSoyVvH5IzNgP0vGgPseDcsWpOgvgdeLmpAI5moPyV38Y0SRk0lBBtO65Tmy8lCjDqWDzUj/RLCZ0QkasZ6kkIdNeugg9xxdWGeIgUvZJgxfq742UhFrPQt9OZiH1qpeJ/3m9xAQ3XsplnBgm6fJQkAhsIpw1gIdcMWrEzBJCFbdZMR0TRaixPZVsCe7ql9dJu1Z1r6q1h3qlcZvXUYQzOIdLcOEaGnAPTWgBhSd4hld4Q1P0gt7Rx3K0gPKdU/gD9PkDcZ6R4Q==</latexit>

Calculating attention (1/2):  
Attention weights 𝜶

𝛼1=.79 𝛼2=.1 𝛼3=.05 𝛼4=-.03

Value vectors

weight

+ ct

ct =
nX

i=1

↵t,ihi

<latexit sha1_base64="mssqSeNS0sTKB8gVqfu9QGdNRg4=">AAACHXicbVDLSgMxFM34rPVVdekmWAQXUmZqQTeFohuXFewDOnXIpJk2NJMZkjtCGeZH3Pgrblwo4sKN+DemD0FbDwQO55xL7j1+LLgG2/6ylpZXVtfWcxv5za3tnd3C3n5TR4mirEEjEam2TzQTXLIGcBCsHStGQl+wlj+8Gvute6Y0j+QtjGLWDUlf8oBTAkbyChU3JDDwg5R6kOEqdnUSeimvOtmdxC4R8YB4KZzy7Cc38HjmFYp2yZ4ALxJnRopohrpX+HB7EU1CJoEKonXHsWPopkQBp4JleTfRLCZ0SPqsY6gkIdPddHJdho+N0sNBpMyTgCfq74mUhFqPQt8kxzvqeW8s/ud1EgguuimXcQJM0ulHQSIwRHhcFe5xxSiIkSGEKm52xXRAFKFgCs2bEpz5kxdJs1xyzkrlm0qxdjmrI4cO0RE6QQ46RzV0jeqogSh6QE/oBb1aj9az9Wa9T6NL1mzmAP2B9fkNUfiisw==</latexit>

(Bahdanau et al., 2015)

 196

+

ct =
nX

i=1

↵t,ihi

<latexit sha1_base64="mssqSeNS0sTKB8gVqfu9QGdNRg4=">AAACHXicbVDLSgMxFM34rPVVdekmWAQXUmZqQTeFohuXFewDOnXIpJk2NJMZkjtCGeZH3Pgrblwo4sKN+DemD0FbDwQO55xL7j1+LLgG2/6ylpZXVtfWcxv5za3tnd3C3n5TR4mirEEjEam2TzQTXLIGcBCsHStGQl+wlj+8Gvute6Y0j+QtjGLWDUlf8oBTAkbyChU3JDDwg5R6kOEqdnUSeimvOtmdxC4R8YB4KZzy7Cc38HjmFYp2yZ4ALxJnRopohrpX+HB7EU1CJoEKonXHsWPopkQBp4JleTfRLCZ0SPqsY6gkIdPddHJdho+N0sNBpMyTgCfq74mUhFqPQt8kxzvqeW8s/ud1EgguuimXcQJM0ulHQSIwRHhcFe5xxSiIkSGEKm52xXRAFKFgCs2bEpz5kxdJs1xyzkrlm0qxdjmrI4cO0RE6QQ46RzV0jeqogSh6QE/oBb1aj9az9Wa9T6NL1mzmAP2B9fkNUfiisw==</latexit>

h1
<latexit sha1_base64="hFxO5UtyO5a/QEoP47g0JAPJpqM=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+4B2KJn0ThuayYxJplCGfocbF4q49WPc+Tdm2i609UDgcM693JMTJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0l/utMSrNY/loJgn6ER1IHnJGjZX8bkTNMAizYc+bkl6p7FbcGcgq8RakDAvUe6Wvbj9maYTSMEG17nhuYvyMKsOZwGmxm2pMKBvRAXYslTRC7Wez0FNybpU+CWNlnzRkpv7eyGik9SQK7GQeUi97ufif10lNeONnXCapQcnmh8JUEBOTvAHS5wqZERNLKFPcZiVsSBVlxvZUtCV4y19eJc1qxbusVB+uyrXbRR0FOIUzuAAPrqEG91CHBjB4gmd4hTdn7Lw4787HfHTNWeycwB84nz9tDJHe</latexit>

h2
<latexit sha1_base64="/BvkXpFuk0AFjRAcO9/abxcFgR0=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+4B2KJk004ZmMmNyp1CGfocbF4q49WPc+Tdm2i609UDgcM693JMTJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju9xvjbk2IlaPOEm4H9GBEqFgFK3kdyOKwyDMhr3qlPRKZbfizkBWibcgZVig3it9dfsxSyOukElqTMdzE/QzqlEwyafFbmp4QtmIDnjHUkUjbvxsFnpKzq3SJ2Gs7VNIZurvjYxGxkyiwE7mIc2yl4v/eZ0Uwxs/EypJkSs2PxSmkmBM8gZIX2jOUE4soUwLm5WwIdWUoe2paEvwlr+8SprVindZqT5clWu3izoKcApncAEeXEMN7qEODWDwBM/wCm/O2Hlx3p2P+eias9g5gT9wPn8AbpKR3w==</latexit>

h3
<latexit sha1_base64="jv9F9hQc7z2SNPpV1QfhwkTepGg=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsy0gi6LblxWsA9oh5JJM21okhmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS1lGiCG2RiEeqG2BNOZO0ZZjhtBsrikXAaSeY3GV+Z0qVZpF8NLOY+gKPJAsZwcZKfl9gMw7CdDyoz9GgXHGr7gJonXg5qUCO5qD81R9GJBFUGsKx1j3PjY2fYmUY4XRe6ieaxphM8Ij2LJVYUO2ni9BzdGGVIQojZZ80aKH+3kix0HomAjuZhdSrXib+5/USE974KZNxYqgky0NhwpGJUNYAGjJFieEzSzBRzGZFZIwVJsb2VLIleKtfXiftWtWrV2sPV5XGbV5HEc7gHC7Bg2towD00oQUEnuAZXuHNmTovzrvzsRwtOPnOKfyB8/kDcBiR4A==</latexit>

h4
<latexit sha1_base64="+YLzsEr/4HtFuWfk3EuOEKujH9g=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWZqQZdFNy4r2Ae0Q8mkmTY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck+OHwuujeN8o8LG5tb2TnG3tLd/cHhUPj5p6yhRlLVoJCLV9YlmgkvWMtwI1o0VI6EvWMef3GV+Z8qU5pF8NLOYeSEZSR5wSoyVvH5IzNgP0vGgPseDcsWpOgvgdeLmpAI5moPyV38Y0SRk0lBBtO65Tmy8lCjDqWDzUj/RLCZ0QkasZ6kkIdNeugg9xxdWGeIgUvZJgxfq742UhFrPQt9OZiH1qpeJ/3m9xAQ3XsplnBgm6fJQkAhsIpw1gIdcMWrEzBJCFbdZMR0TRaixPZVsCe7ql9dJu1Z1r6q1h3qlcZvXUYQzOIdLcOEaGnAPTWgBhSd4hld4Q1P0gt7Rx3K0gPKdU/gD9PkDcZ6R4Q==</latexit>

Summary: Additive attention 
(Bahdanau, 2015)

𝛼1=.79 𝛼2=.1 𝛼3=.05 𝛼4=-.03

1.For each query-key
pair, calculate weight ai

2.Normalize via softmax

3.Combine together
value vectors via
weighted sum to get ct

4.Use in your model in
any part you like

ct =
nX

i=1

↵t,ihi

<latexit sha1_base64="mssqSeNS0sTKB8gVqfu9QGdNRg4=">AAACHXicbVDLSgMxFM34rPVVdekmWAQXUmZqQTeFohuXFewDOnXIpJk2NJMZkjtCGeZH3Pgrblwo4sKN+DemD0FbDwQO55xL7j1+LLgG2/6ylpZXVtfWcxv5za3tnd3C3n5TR4mirEEjEam2TzQTXLIGcBCsHStGQl+wlj+8Gvute6Y0j+QtjGLWDUlf8oBTAkbyChU3JDDwg5R6kOEqdnUSeimvOtmdxC4R8YB4KZzy7Cc38HjmFYp2yZ4ALxJnRopohrpX+HB7EU1CJoEKonXHsWPopkQBp4JleTfRLCZ0SPqsY6gkIdPddHJdho+N0sNBpMyTgCfq74mUhFqPQt8kxzvqeW8s/ud1EgguuimXcQJM0ulHQSIwRHhcFe5xxSiIkSGEKm52xXRAFKFgCs2bEpz5kxdJs1xyzkrlm0qxdjmrI4cO0RE6QQ46RzV0jeqogSh6QE/oBb1aj9az9Wa9T6NL1mzmAP2B9fkNUfiisw==</latexit>

FFNN!
(Bahdanau, 2015)

a(q, k) = vT
a tanh(Wa[q; k])

 197

Alignment matrix (Bahdanau, 2015)

https://arxiv.org/pdf/1409.0473.pdf

https://arxiv.org/pdf/1409.0473.pdf

 198

Enc-dec performance deteriorates rapidly
as input sentence length increases

https://arxiv.org/pdf/1409.0473.pdf

Cho et al., (2014); Bahdanau et al. (2015)

with attention

https://arxiv.org/pdf/1409.0473.pdf

Different forms of
attention are available

(e.g., Luong et al., 2015)

‣ In Bahdanau et al., (2015): the alignment score function is
a single FFNN (MLP) with a single hidden layer:

‣

‣ both va and Wa are trained with the network

 200

Alignment Functions: What’s ?

a(q, k) = vT
a tanh(Wa[q; k])

a(q, k)

‣ Dot product (Luong et al., 2015)

‣

‣ requires same size; but has no parameters!

‣ Bilinear (Luong et al., 2015)

‣

‣ Scaled dot product (Vaswani et al., 2017)

‣

‣ fixes problem of dot product that scale of dot product
increases as dimensions get larger

 201

More alignment functions

a(q, k) = qTk

a(q, k) = qTWk

a(q, k) =
qTk
|k |

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

A little more on
attention

 203

Self-attention

‣ Attend to sentence itself (Cheng, Dong, Lapata, 2016)

https://arxiv.org/pdf/1601.06733.pdf

https://arxiv.org/pdf/1601.06733.pdf

What to attend to?
Some more examples

‣ Salient parts of the image (e.g., Xu et at., 2015)

 205

Image caption generation

‣ E.g. Rei et al., 2016

 206

Character-level attention

Attention is everywhere
[and all you need?!] ->

More on Monday :-)

To summarize

 209

To sum up…

Motivation,  
Brief History, Overview

foundations

representations

beyond FFNNs

Back to the roots:  
Language Models

 Feedforward NNs
(FFNNs)

What’s the input?
Representations

Convolutional Neural
Networks (CNNs)

Recurrent Neural
Network (RNNs)

Advanced RNNs,
Decoders

Attention? Attention!

Contextualized
Embeddings, Fine-tuning

n-grams, limitations FFNN LM

n-hot & static word embeddings

ELMo

variable-size input
& “soft” ngrams

vanilla RNNs GRU, LSTM  
 

MLP, CRF
Basis for Transformer

https://nlp.itu.dk/

Questions?
Thanks!

bplank.github.io

Barbara Plank
@barbara_plank  

ITU, Denmark

Research is supported by:

Follow us:

Thanks to all the
organizers & sponsors of:

http://bplank.github.io

‣ Jurasky & Martin textbook, chapter 3 (n-gram LMs), chapter
7 (neural LMs)

‣ Graham Neubig (2018): Language Models 4: Recurrent
Neural Network Language Models

‣ Yoav Goldberg (2015): A Primer on Neural Network
Models for Natural Language Processing

‣ Chris Manning & Abigail See (2018) Stanford class

 211

References (incomplete)

https://web.stanford.edu/~jurafsky/slp3/3.pdf
http://www.phontron.com/class/mtandseq2seq2018/assets/slides/mt-fall2018.chapter6.pdf
http://www.phontron.com/class/mtandseq2seq2018/assets/slides/mt-fall2018.chapter6.pdf
http://www.phontron.com/class/mtandseq2seq2018/assets/slides/mt-fall2018.chapter6.pdf
https://arxiv.org/abs/1510.00726
https://arxiv.org/abs/1510.00726
https://arxiv.org/abs/1510.00726

