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Supervised (Structured) Prediction

I Learning to predict: given training data
{

(x(1),y(1)), (x(2),y(2)), . . . , (x(m),y(m))
}

learn a predictor x→ y that works well on unseen inputs x

I Non-Structured Prediction: outputs y are atomic
I Binary prediction: y ∈ {−1,+1}
I Multiclass prediction: y ∈ {1, 2, . . . , L}

I Structured Prediction: outputs y are structured
I Sequence prediction: y are sequences
I Parsing: y are trees
I . . .
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Named Entity Recognition

y per - qnt - - org org - time
x Jim bought 300 shares of Acme Corp. in 2006

y per per - - loc
x Jack London went to Paris

y per per - - loc
x Paris Jackson went to London

y per - - loc
x Jackie went to Lisdon
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Part-of-speech Tagging

y NNP NNP VBZ NNP .
x Ms. Haag plays Elianti .
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Syntactic Dependency Parsing

? Unesco is now holding its biennial meetings in New York .

ROOT

SBJ TMP

VC NMOD

NMOD

OBJ

LOC

NAME

PMOD

P

x are sentences
y are syntactic dependency trees
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Machine Translation

(illustration by Ben Taskar)

x are sentences in some source language (e.g. French)
y are sentence translations in a target language (e.g. English)
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Object Detection

(Kumar and Hebert, 2003)

x are images
y are grids labeled with object types
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Today’s Goals

I Introduce basic concepts for structured prediction
I We will focus on sequence prediction
I Quick overview of dependency parsing

I What can we can borrow from standard classification?
I Learning paradigms and algorithms, in essence, work here too
I However, computations behind algorithms are prohibitive

I Today’s main topics:
I Transition systems versus factored models
I Feature representations of structured input-output pairs
I Prediction algorithms
I Learning algorithms: Perceptron and CRF
I Local and global learning losses
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Outline

Sequence Prediction
Transition-based Sequence Prediction
Factored Sequence Prediction
Algorithms for Factored Models
Log-linear Factored Models

Learning
The Learner’s Game
Structured Perceptron
Log-linear Models and CRFs

Dependency Parsing
Arc-factored Models
Transition-based Parsing

Summary
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Sequence Prediction

y per per - - loc
x Jack London went to Paris
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Sequence Prediction

I x = x1x2 . . . xn are input sequences, xi ∈ X
I y = y1y2 . . . yn are output sequences, yi ∈ {1, . . . , L}

I Goal: given training data

{
(x(1),y(1)), (x(2),y(2)), . . . , (x(m),y(m))

}

learn a predictor x→ y that works well on unseen inputs x

I What is the form of our prediction model?
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Exponentially-many Solutions

I Let Y = {-,per, loc}

I The solution space (all output sequences):

Jack London went to Paris

-

per

loc

-

per

loc

-

per

loc

-

per

loc

-

per

loc

I Each path is a possible solution

I For an input sequence of size n, there are |Y|n possible outputs
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Approach 1: Label Classifiers

I Multiclass prediction over individual labels at each position

ŷt = argmax
l ∈ {loc, per, -}

score(x, t, l)

I For linear models, score(x, i, l) = w · f(x, t, l)
I f(x, t, l) ∈ Rd represents an assignment of label l for xt
I w ∈ Rd is a vector of parameters (learned), has a weight for each feature in f

I Can capture interactions between full input sequence x and one output label l
e.g.: current word, surrounding words, capitalization, prefix-suffix, gazetteer, . . .

I Can not capture interactions between output labels!
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Approach 2: Transition-based Sequence Prediction

I Predict one label at a time, left-to-right, using previous predictions:

ŷt = argmax
l ∈ {loc, per, -}

score(x, t, l, ŷ1:t−1)

I Captures interactions between full input x and prefixes of the output sequence
I Prediction of ŷ is approximate (greedy, beam search)

I Why left-to-right and not right-to-left?
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Approach 3: Factored Sequence Prediction

I At each position, multiclass prediction over label bigrams (pairs of adjacent labels):

ŷ = argmax
y ∈ Yn

score(x,y) = argmax
y ∈ Yn

n∑

i=1

score(x, i, yi−1, yi)

I Output sequence factored into label bigrams

I Captures interactions between full input x and factors of output sequence

I Prediction is tractable for many types of factorizations
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Approach 4: Re-Ranking

ŷ = argmax
y ∈ A(Yn)

score(x,y)

I Scoring of full inputs and outputs: very expressive!

I Relies on an active set A(Yn) of full outputs, enumerated exhaustively
I A base model is used to select active set

I The base model follows one of the previous approaches
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Sequence Prediction: Summary of Approaches

take home message 1: the expressivity-tractability trade-off exists
take home message 2: always pick the simplest approach that suits the task at hand
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Greedy Sequence Prediction

I Run a greedy classifier left-to-right:
I For t = 1 . . . n:

ŷt = argmax
l ∈ {loc, per, -}

score(x, t, l, ŷ1:t−1)

I What is the form of score(x, t, l, ŷ1:t−1)?
I We focus on linear scoring functions: score(x, t, l, ŷ1:t−1) = w · f(x, t, l, ŷ1:t−1)
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Representations in Greedy Sequence Prediction

I In linear greedy sequence prediction, at time t

score(x, t, l, ŷ1:t−1) = w · f(x, t, l, ŷ1:t−1)

I w ∈ Rd is a parameter vector, to be learned

I f(x, t, l, ŷ1:t−1) ∈ Rd is a feature vector

I Goal: guess the correct l at position t
I How to construct f(x, t, l, ŷ1:t−1)?

I New trend: representation learning
I Old school: manually with feature templates
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Indicator Features for One Label Only

I f(x, t, l) is a vector of d features representing label l for xt
I What’s in a feature fj(x, t, l)?

I Anything we can compute using x and t and l
I Anything that indicates whether l is (not) a good label for xt

I Indicator features: binary-valued features looking at:
I a simple pattern of x and target position t
I and the candidate label l for position t

fj(x, t, l) =

{
1 if xt =London and l =loc
0 otherwise

fk(x, t, l) =

{
1 if xt+1 =went and l =loc
0 otherwise

I Indicator features produce sparse feature vectors
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Feature Templates

I Feature templates generate many indicator features
I A feature template is identified by a type, and a number of values

I Example: template word indicates the current word

f〈word,a,w〉(x, t, l) =

{
1 if xt = w and l = a
0 otherwise

I A feature of this type is identified by the tuple 〈word, a, w〉
I Generates a feature for every label a ∈ Y and every word w

I Feature vectors and weight vectors are indexed by feature tuples

I In feature-based models:
I Define feature templates manually
I Instantiate the templates on every set of values in the training data
→ generates a very high-dimensional feature space

I Define parameter vector w indexed by such feature tuples
I Let the learning algorithm choose the relevant features
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More Features for NE Recognition

per
Jack London went to Paris

In practice, construct f(x, t, l) by . . .

I Define a number of simple patterns of x and t

I current word xt
I is xt capitalized?
I xt has digits?
I prefixes/suffixes of size 1, 2, 3, . . .
I is xt a known location?
I is xt a known person?

I next word
I previous word
I current and next words

together
I other combinations

I Define feature templates by combining patterns with labels l

I Generate actual features by instantiating templates on training data
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Feature Templates in Greedy Sequence Prediction

y per per -
x Jack London went to Paris

I f(x, t, l, ŷ1:t−1) has access to all preceding labels

I Example: A template for word + current label + previous label:

f〈wb,a,b,w〉(x, t, l, ŷ1:t−1) =





1 if xt = w and
ŷt−1 = a and l = b

0 otherwise

I In practice:
I Preceeding labels next to t
I Bag-of-labels in ŷ1:t−1
I Combinations with other features

I Neural networks automatically induce “good” features out of x and ŷ1:t−1
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Transition Systems (general form)

I Given an input x, a transition system defines:
I A set of states S(x)
I An initial state s0 ∈ S(x), and a set of final states S∞ ⊆ S(x)
I A set of allowed actions A(s,x) for all s ∈ S(x)
I A transition function transition : s× a→ s′

I A scoring function: score : x× s× a→ R
I To predict output y from input x:

I s = s0
I while s 6∈ S∞:

I a = argmaxa∈A(s,x) score(x, s, a)
I s = transition(s, a)

I extract y from s

I Simple, very fast and expressive! Very popular in NLP:
I Greedy sequence prediction (one label at a time, left-to-right or right-to-left)
I Shift-reduce parsing (more later)
I Word segmentation, machine translation, . . .
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Greedy Predictions are not Optimal, even with Beam Search

I Greedy sequence predictions can not undo decisions at a later stage

I Sometimes the model is right at a global scope, but not at each greedy step!
I Solution: Beam Search

I General local search method
I Maintains several good hypotheses, instead of just the best one
I Many strategies, sometimes specific to the task and transition system
I Empirically, it often improves over greedy search
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Factored Sequence Predictors

ŷ = argmax
y ∈ Yn

n∑

i=1

score(x, i, yi−1, yi)

Next questions:

I What is the form of score(x, i, a, b)?
We will use linear scoring functions: score(x, i, a, b) = w · f(x, i, a, b)

I There are exponentially-many sequences y for a given x,
how do we solve the argmax problem?
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Representations Factored at Bigrams

y: per per - - loc
x: Jack London went to Paris

I score(x, i, a, b) = w · f(x, i, a, b)
I f(x, i, yi−1, yi)

I A d-dimensional feature vector of a label bigram at i
I Each dimension is typically a boolean indicator (0 or 1)

I f(x,y) =
∑n

i=1 f(x, i, yi−1, yi)
I A d-dimensional feature vector of the entire y
I Aggregated representation by summing bigram feature vectors
I Each dimension is now a count of a feature pattern
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Linear Factored Sequence Prediction

argmax
y∈Yn

w · f(x,y) where f(x,y) =

n∑

i=1

f(x, i, yi−1, yi)

I Note the linearity of the expression:
score(x,y) = w · f(x,y)

= w ·
n∑

i=1

f(x, i, yi−1, yi)

=

n∑

i=1

w · f(x, i, yi−1, yi)

=

n∑

i=1

score(x, i, yi−1, yi)
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Predicting with Factored Sequence Models

I Assume we have a score function score(x, i, a, b)

I Given x1:n find:

argmax
y∈Yn

n∑

i=1

score(x, i, yi−1, yi)

I Use the Viterbi algorithm, takes O(n|Y|2)

I Notational change: since x1:n is fixed we will use

s(i, a, b) = score(x, i, a, b)
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Viterbi for Factored Sequence Models
I Given scores s(i, a, b) for each position i and output bigram a, b, find:

argmax
y∈Yn

n∑

i=1

s(i, yi−1, yi)

I Intuition: consider this example x and two alternative solutions y and y′:
1 2 3 4 5

x Jack London went to Paris
y per loc - - loc
y′ per per - - loc

I What is the score of y′ relative to the score of y?

s(x,y′) = s(x,y) +

s(2,per, per)

−

s(2,per, loc)

+

s(3, loc, -)

−

s(3,per, -)

output sequences that share bigrams also share scores
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Viterbi recurrence

I Viterbi is a dynamic programming algorithm that uses the following recurrence

I Assume that, for a certain position i and each label l ∈ Y, we have the best
sub-sequence from positions 1 to i ending with label l:

1 . . . i i+ 1

best subsequence with yi = per

best subsequence with yi = loc

best subsequence with yi = –

s(i+1,per, loc)

s(i+1,loc, loc)

s(i
+1,–

, lo
c)

I What is the best sequence up to position i+ 1 with yi+1 =loc?
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Viterbi for Factored Sequence Models

ŷ = argmaxy∈Yn

∑n
i=1 s(i, yi−1, yi)

I Definition: score of optimal sequence for x1:i ending with a ∈ Y

δ(i, a) = max
y∈Yi:yi=a

i∑

j=1

s(j, yj−1, yj)

I Use the following recursions, for all a ∈ Y, for i = 2 . . . n:

δ(1, a) = s(1, y0 = null, a)

δ(i, a) = max
b∈Y

δ(i− 1, b) + s(i, b, a)

I The optimal score for x is maxa∈Y δ(n, a)

I The optimal sequence ŷ can be recovered through back-pointers

I Cost: O(n|Y|2)
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δ(i− 1, b) + s(i, b, a)

I The optimal score for x is maxa∈Y δ(n, a)

I The optimal sequence ŷ can be recovered through back-pointers

I Homework: rewrite the Viterbi equations such that the algorithm proceeds right-to-left.
Observe that the factored model remains the same (i.e. it is not a directional model)
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Variations of Viterbi

I Sparse Viterbi
I Only a few labels in Y apply to a position
I Only a few label bigrams are possible
I A sparse implementation cuts the O(|Y|2) factor

I Higher-order Viterbi: factorize at trigrams instead of bigrams
I Cost O(n|Y|3)
I Very common in POS tagging (using sparse Viterbi to cut the O(|Y|3) cost factor)

I k-best Viterbi: return the best k sequences (not just the single best)
I Used in re-ranking approaches and some loss functions

I Forward-Backward: Viterbi for sum-product computations (instead of max-sum)
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Forward-Backward Max-Sum Computations

I The Viterbi algorithm solves a max-sum recurrence

max
y∈Yn

n∑

i=1

s(i, yi−1, yi)

I The sum-product recurrence is also very useful (more later)

∑

y∈Yn

n∏

i=1

s(i, yi−1, yi)

I The same style of dynamic programming works
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Forward Algorithm

∑

y∈Yn

n∏

i=1

s(i, yi−1, yi)

I Definition: forward quantities

α(i, a) =
∑

y1:i∈Yi:yi=a

∏i
j=1 s(j, yj−1, yj)

I Use the following recursions, for all a ∈ Y, for i = 2 . . . n:

α(i, a) = s(1, y0 = null, a)

α(i, a) =
∑

b∈Y

α(i− 1, b) ∗ s(i, b, a)

I The total sum-product is
∑

a α(n, a)

I Like Viterbi, the forward algorithm runs in O(n|Y|2)
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Backward Algorithm

∑

y∈Yn

n∏

i=1

s(i, yi−1, yi)

I Definition: backward quantities

β(i, a) =
∑

yi:n∈Y(n−i+1):yi=a

∏n
j=i+1 s(j, yj−1, yj)

I Now the recursions run backwards! For all a ∈ Y, for i = n− 1 . . . 1:

β(n, a) = 1

β(i, a) =
∑

b∈Y

s(i, a, b) ∗ β(i+ 1, b)

I The total sum-product is
∑

a s(1, y0 = null, a) ∗ β(1, a)

I Like Viterbi and forward algorithms, the backward algorithm runs in O(n|Y|2)

36/84



Log-linear Models for Sequence Prediction
I Model the conditional distribution:

Pr(y | x;w) =
exp {w · f(x,y)}

Z(x;w)

where
I f(x,y) represents x and y with d features
I w ∈ Rd are the parameters of the model
I Z(x;w) is a normalizer called the partition function

Z(x;w) =
∑

z∈Y∗

exp {w · f(x, z)}

I To predict the best sequence
argmax
y∈Yn

Pr(y|x)
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Log-linear Models: Name

I Let’s take the log of the conditional probability:

log Pr(y | x;w) = log
exp{w · f(x,y)}

Z(x;w)

= w · f(x,y)− log
∑

y

exp{w · f(x,y)}

= w · f(x,y)− logZ(x;w)

I Partition function: Z(x;w) =
∑

z exp{w · f(x, z)}
I logZ(x;w) is a constant for a fixed x

I In the log space, computations are linear,
i.e., we model log-probabilities using a linear predictor
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Making Predictions with Log-Linear Models
I For tractability, assume f(x,y) decomposes into bigrams:

f(x1:n,y1:n) =

n∑

i=1

f(x, i, yi−1, yi)

I Given w, given x1:n, find:

argmax
y1:n

Pr(y1:n|x1:n;w) = amax
y

exp {∑n
i=1w · f(x, i, yi−1, yi)}

Z(x;w)

= amax
y

exp

{
n∑

i=1

w · f(x, i, yi−1, yi)
}

= amax
y

n∑

i=1

w · f(x, i, yi−1, yi)

I We can use the Viterbi algorithm
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Probability of an Output Sequence given an Input Sequence

I Given x and y, compute Pr(y | x;w) = exp{w·f(x,y)}
Z(x;w)

I To compute Z(x;w) we need to sum over Yn!

I But with some algebraic massaging: (let s(i, yi−1, yi) = w · f(x, i, yi−1, yi))

Z(x;w) =
∑

y

exp{w · f(x,y)}

=
∑

y

exp

{
n∑

i=1

s(i, yi−1, yi)

}

=
∑

y

n∏

i=1

exp {s(i, yi−1, yi)}

I Z(x;w) is a sum-product computation: forward algorithm (with exponentiated scores)!

I Z(x;w) =
∑

a α(n, a)
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Marginal Probability of a Single Label

I What’s the probability that token i has label a?

I We need to compute the marginal distribution of yi:

µi(a) = Pr(yi = a|x;w) =
∑

y∈Yn:yi=a

Pr(y|x;w)

= (algebraic massaging)

=
α(i, a) ∗ β(i, a)

Z(x;w)

I Use forward-backward (using exponentiated scores)

I Recall that Z(x;w) =
∑

l α(n, l)
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I Recall that Z(x;w) =

∑
l α(n, l)
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Marginal Probability of a Label Bigram

I What’s the probability that token i− 1 has label a and token i has label b?

I We need to compute the marginal distribution of label bigrams at position i:

µi(a, b) = Pr(yi−1 = a, yi = b|x;w) =
∑

y∈Yn:yi−1=a,yi=b

Pr(y|x;w)

= (algebraic massaging)

=
α(i− 1, a) ∗ exp{w · f(x, i, a, b)} ∗ β(i, b)

Z(x;w)

I Again forward-backward (using exponentiated scores)
I Recall that Z(x;w) =

∑
l α(n, l)
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Linear Factored Sequence Prediction

argmax
y∈Yn

w · f(x,y)

I Factored representation, e.g. based on bigrams

f(x,y) =

n∑

i=1

f(x, i, yi−1, yi)

I Flexible, arbitrary features of full x and the factors
I Efficient prediction using Viterbi
I In probabilistic models, efficient computation of marginals using Forward-Backward
I Next, learning w:

I The Structured Perceptron
I Probabilistic log-linear models:

I Local learning, a.k.a. Maximum-Entropy Markov Models
I Global learning, a.k.a. Conditional Random Fields
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Outline

Sequence Prediction
Transition-based Sequence Prediction
Factored Sequence Prediction
Algorithms for Factored Models
Log-linear Factored Models

Learning
The Learner’s Game
Structured Perceptron
Log-linear Models and CRFs

Dependency Parsing
Arc-factored Models
Transition-based Parsing

Summary
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Learning Structured Predictors

Perceptron, Log-Linear Models and CRFs
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The Learner’s Game

Training Data

I per - -
Maria is young

I loc - -
Athens is big

I per - - loc
Jack went to Athens

I loc - -
Argentina is bigger

I per per - - loc loc
Jack London went to South Pacific

I org - - org
Argentina played against Chile

Weight Vector w

w〈Lower,-〉 = +1

w〈Upper,loc〉 = +1
w〈Word,per,Maria〉 = +2
w〈Word,per,Jack〉 = +2
w〈NextW,per,went〉 = +2
w〈NextW,org,played〉 = +2
w〈PrevW,org,against〉 = +2
. . .
w〈UpperBigram,per,per〉 = +100
w〈UpperBigram,loc,loc〉 = +100
w〈UpperBigram,loc,per〉 = −100
w〈UpperBigram,per,loc〉 = −100
w〈NextW,loc,played〉 = −1000

46/84



The Learner’s Game

Training Data

I per - -
Maria is young

I loc - -
Athens is big

I per - - loc
Jack went to Athens

I loc - -
Argentina is bigger

I per per - - loc loc
Jack London went to South Pacific

I org - - org
Argentina played against Chile

Weight Vector w

w〈Lower,-〉 = +1

w〈Upper,loc〉 = +1
w〈Word,per,Maria〉 = +2
w〈Word,per,Jack〉 = +2
w〈NextW,per,went〉 = +2
w〈NextW,org,played〉 = +2
w〈PrevW,org,against〉 = +2
. . .
w〈UpperBigram,per,per〉 = +100
w〈UpperBigram,loc,loc〉 = +100
w〈UpperBigram,loc,per〉 = −100
w〈UpperBigram,per,loc〉 = −100
w〈NextW,loc,played〉 = −1000

46/84



The Learner’s Game

Training Data

I per - -
Maria is young

I loc - -
Athens is big

I per - - loc
Jack went to Athens

I loc - -
Argentina is bigger

I per per - - loc loc
Jack London went to South Pacific

I org - - org
Argentina played against Chile

Weight Vector w

w〈Lower,-〉 = +1
w〈Upper,per〉 = +1

w〈Upper,loc〉 = +1
w〈Word,per,Maria〉 = +2
w〈Word,per,Jack〉 = +2
w〈NextW,per,went〉 = +2
w〈NextW,org,played〉 = +2
w〈PrevW,org,against〉 = +2
. . .
w〈UpperBigram,per,per〉 = +100
w〈UpperBigram,loc,loc〉 = +100
w〈UpperBigram,loc,per〉 = −100
w〈UpperBigram,per,loc〉 = −100
w〈NextW,loc,played〉 = −1000

46/84



The Learner’s Game

Training Data

I per - -
Maria is young

I loc - -
Athens is big

I per - - loc
Jack went to Athens

I loc - -
Argentina is bigger

I per per - - loc loc
Jack London went to South Pacific

I org - - org
Argentina played against Chile

Weight Vector w

w〈Lower,-〉 = +1

((((((((
w〈Upper,per〉 = +1
w〈Upper,loc〉 = +1

w〈Word,per,Maria〉 = +2
w〈Word,per,Jack〉 = +2
w〈NextW,per,went〉 = +2
w〈NextW,org,played〉 = +2
w〈PrevW,org,against〉 = +2
. . .
w〈UpperBigram,per,per〉 = +100
w〈UpperBigram,loc,loc〉 = +100
w〈UpperBigram,loc,per〉 = −100
w〈UpperBigram,per,loc〉 = −100
w〈NextW,loc,played〉 = −1000

46/84



The Learner’s Game

Training Data

I per - -
Maria is young

I loc - -
Athens is big

I per - - loc
Jack went to Athens

I loc - -
Argentina is bigger

I per per - - loc loc
Jack London went to South Pacific

I org - - org
Argentina played against Chile

Weight Vector w

w〈Lower,-〉 = +1

((((((((
w〈Upper,per〉 = +1
w〈Upper,loc〉 = +1
w〈Word,per,Maria〉 = +2

w〈Word,per,Jack〉 = +2
w〈NextW,per,went〉 = +2
w〈NextW,org,played〉 = +2
w〈PrevW,org,against〉 = +2
. . .
w〈UpperBigram,per,per〉 = +100
w〈UpperBigram,loc,loc〉 = +100
w〈UpperBigram,loc,per〉 = −100
w〈UpperBigram,per,loc〉 = −100
w〈NextW,loc,played〉 = −1000

46/84



The Learner’s Game

Training Data

I per - -
Maria is young

I loc - -
Athens is big

I per - - loc
Jack went to Athens

I loc - -
Argentina is bigger

I per per - - loc loc
Jack London went to South Pacific

I org - - org
Argentina played against Chile

Weight Vector w

w〈Lower,-〉 = +1

((((((((
w〈Upper,per〉 = +1
w〈Upper,loc〉 = +1
w〈Word,per,Maria〉 = +2
w〈Word,per,Jack〉 = +2

w〈NextW,per,went〉 = +2
w〈NextW,org,played〉 = +2
w〈PrevW,org,against〉 = +2
. . .
w〈UpperBigram,per,per〉 = +100
w〈UpperBigram,loc,loc〉 = +100
w〈UpperBigram,loc,per〉 = −100
w〈UpperBigram,per,loc〉 = −100
w〈NextW,loc,played〉 = −1000

46/84



The Learner’s Game

Training Data

I per - -
Maria is young

I loc - -
Athens is big

I per - - loc
Jack went to Athens

I loc - -
Argentina is bigger

I per per - - loc loc
Jack London went to South Pacific

I org - - org
Argentina played against Chile

Weight Vector w

w〈Lower,-〉 = +1

((((((((
w〈Upper,per〉 = +1
w〈Upper,loc〉 = +1
w〈Word,per,Maria〉 = +2
w〈Word,per,Jack〉 = +2
w〈NextW,per,went〉 = +2

w〈NextW,org,played〉 = +2
w〈PrevW,org,against〉 = +2
. . .
w〈UpperBigram,per,per〉 = +100
w〈UpperBigram,loc,loc〉 = +100
w〈UpperBigram,loc,per〉 = −100
w〈UpperBigram,per,loc〉 = −100
w〈NextW,loc,played〉 = −1000

46/84



The Learner’s Game

Training Data

I per - -
Maria is young

I loc - -
Athens is big

I per - - loc
Jack went to Athens

I loc - -
Argentina is bigger

I per per - - loc loc
Jack London went to South Pacific

I org - - org
Argentina played against Chile

Weight Vector w

w〈Lower,-〉 = +1

((((((((
w〈Upper,per〉 = +1
w〈Upper,loc〉 = +1
w〈Word,per,Maria〉 = +2
w〈Word,per,Jack〉 = +2
w〈NextW,per,went〉 = +2
w〈NextW,org,played〉 = +2

w〈PrevW,org,against〉 = +2
. . .
w〈UpperBigram,per,per〉 = +100
w〈UpperBigram,loc,loc〉 = +100
w〈UpperBigram,loc,per〉 = −100
w〈UpperBigram,per,loc〉 = −100
w〈NextW,loc,played〉 = −1000

46/84



The Learner’s Game

Training Data

I per - -
Maria is young

I loc - -
Athens is big

I per - - loc
Jack went to Athens

I loc - -
Argentina is bigger

I per per - - loc loc
Jack London went to South Pacific

I org - - org
Argentina played against Chile

Weight Vector w

w〈Lower,-〉 = +1

((((((((
w〈Upper,per〉 = +1
w〈Upper,loc〉 = +1
w〈Word,per,Maria〉 = +2
w〈Word,per,Jack〉 = +2
w〈NextW,per,went〉 = +2
w〈NextW,org,played〉 = +2
w〈PrevW,org,against〉 = +2

. . .
w〈UpperBigram,per,per〉 = +100
w〈UpperBigram,loc,loc〉 = +100
w〈UpperBigram,loc,per〉 = −100
w〈UpperBigram,per,loc〉 = −100
w〈NextW,loc,played〉 = −1000

46/84



The Learner’s Game

Training Data

I per - -
Maria is young

I loc - -
Athens is big

I per - - loc
Jack went to Athens

I loc - -
Argentina is bigger

I per per - - loc loc
Jack London went to South Pacific

I org - - org
Argentina played against Chile

Weight Vector w

w〈Lower,-〉 = +1

((((((((
w〈Upper,per〉 = +1
w〈Upper,loc〉 = +1
w〈Word,per,Maria〉 = +2
w〈Word,per,Jack〉 = +2
w〈NextW,per,went〉 = +2
w〈NextW,org,played〉 = +2
w〈PrevW,org,against〉 = +2
. . .
w〈UpperBigram,per,per〉 = +100
w〈UpperBigram,loc,loc〉 = +100
w〈UpperBigram,loc,per〉 = −100
w〈UpperBigram,per,loc〉 = −100
w〈NextW,loc,played〉 = −1000

46/84



The Structured Perceptron
Collins (2002)

I Set w = 0

I For t = 1 . . . T
I For each training example (x,y)

1. Compute z = argmaxz w · f(x, z)
2. If z 6= y

w← w + f(x,y)− f(x, z)

I Return w
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The Structured Perceptron + Averaging
Freund and Schapire (1999); Collins (2002)

I Set w = 0, wa = 0

I For t = 1 . . . T
I For each training example (x,y)

1. Compute z = argmaxz w · f(x, z)
2. If z 6= y

w← w + f(x,y)− f(x, z)

3. wa = wa +w

I Return wa/mT , where m is the number of training examples
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Perceptron Updates: Example

y per per - - loc
z per loc - - loc
x Jack London went to Paris

I Let y be the correct output for x.
I Say we predict z instead, under our current w
I The update is:

g = f(x,y)− f(x, z)

=
∑

i

f(x, i, yi−1, yi)−
∑

i

f(x, i, zi−1, zi)

= f(x, 2,per,per)− f(x, 2,per, loc)

+ f(x, 3,per, -)− f(x, 3, loc, -)

I Perceptron updates are typically very sparse
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Properties of the Perceptron

I Online algorithm. Often much more efficient than “batch” algorithms

I If the data is separable, it will converge to parameter values with 0 errors

I Number of errors before convergence is related to a definition of margin. Can also
relate margin to generalization properties

I In practice:

1. Averaging improves performance a lot
2. Typically reaches a good solution after only a few (say 5) iterations over the training set
3. Often performs nearly as well as CRFs, or SVMs

I Structured Perceptron and Beam Search:
I Transition systems can not recover the argmax solution
I Structured Perceptron can use beam search instead (i.e. an approximation to argmax)
I See Collins and Roark (2004); Zhang and Clark (2011); Huang et al. (2012)
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Averaged Perceptron Convergence

Iteration Accuracy
1 90.79
2 91.20
3 91.32
4 91.47
5 91.58
6 91.78
7 91.76
8 91.82
9 91.88

10 91.91
11 91.92
12 91.96
. . .

results on validation set for a parsing task
perceptron with beam search

(Zhang and Clark, 2011)
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Log-linear Models for Sequence Prediction
I Model the conditional distribution:

Pr(y | x;w) =
exp {w · f(x,y)}

Z(x;w)

where
I f(x,y) represents x and y with d features
I w ∈ Rd are the parameters of the model
I Z(x;w) is a normalizer called the partition function

Z(x;w) =
∑

z∈Y∗

exp {w · f(x, z)}

I To predict the best sequence
argmax
y∈Yn

Pr(y|x)
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Parameter Estimation in Log-Linear Models

Pr(y | x;w) =
exp {w · f(x,y)}

Z(x;w)

I Given training data
{

(x(1),y(1)), (x(2),y(2)), . . . , (x(m),y(m))
}

,

I How to estimate w?
I Define the conditional log-likelihood (or cross-entropy) of the data:

L(w) =

m∑

k=1

log Pr(y(k)|x(k);w)

I L(w) measures how well w explains the data. A good value for w will give a high
value for Pr(y(k)|x(k);w) for all k = 1 . . .m.

I We want w that maximizes L(w)
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Learning Log-Linear Models: Loss + Regularization

I Solve:

w∗ = argmin
w∈Rd

Loss︷ ︸︸ ︷
−L(w) +

Regularization︷ ︸︸ ︷
λ

2
||w||2

where
I The first term is the negative conditional log-likelihood
I The second term is a regularization term, it penalizes solutions with large norm
I λ ∈ R controls the trade-off between loss and regularization

I Convex optimization problem → gradient descent
I Two common losses based on log-likelihood that make learning tractable:

I Local Loss (MEMM): assume that Pr(y | x;w) decomposes
I Global Loss (CRF): assume that f(x,y) decomposes
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Local Log-linear Loss (a.k.a. Maximum Entropy Markov Models)
McCallum, Freitag, and Pereira (2000)

I If we apply the chain rule:

Pr(y1:n | x1:n) = Pr(y1 | x1:n)× Pr(y2:n | x1:n, y1)

= Pr(y1 | x1:n)×
n∏

i=2

Pr(yi|x1:n,y1:i−1)

I Markov assumption (the model becomes factored):

Pr(yi|x1:n,y1:i−1) = Pr(yi|x1:n, yi−1)

I Now we can write

Pr(y1:n | x1:n) = Pr(y1|x1:n)×
n∏

i=2

Pr(yi|x1:n,yi−1)
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Parameter Estimation with Local Log-Linear Markov Models

Pr(y1:n | x1:n) = Pr(y1 | x1:n)×
n∏

i=2

Pr(yi|x1:n, i, yi−1)

I The log-linear model is normalized locally (i.e. at each position):

Pr(y | x, i, y′) =
exp{w · f(x, i, y′, y)}

Z(x, i, y′)

I The log-likelihood is also local :

L(w) =

m∑

k=1

n(k)∑

i=1

log Pr(y
(k)
i |x(k), i,y

(k)
i−1)

∂L(w)

∂wj
=

1

m

m∑

k=1

n(k)∑

i=1




observed︷ ︸︸ ︷
fj(x

(k), i,y
(k)
i−1,y

(k)
i )−

expected︷ ︸︸ ︷∑

y∈Y
Pr(y|x(k), i,y

(k)
i−1, y) fj(x

(k), i,y
(k)
i−1, y)
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Conditional Random Fields
Lafferty, McCallum, and Pereira (2001)

I Log-linear model of the conditional distribution:

Pr(y|x;w) =
exp{w · f(x,y)}

Z(x)

where
I x and y are input and output sequences
I f(x,y) is a feature vector of x and y that decomposes into factors
I w are model parameters

I To predict the best sequence

ŷ = argmax
y∈Y∗

Pr(y|x)

I Log-Likelihood at the global (sequence) level:

L(w) =

m∑

k=1

log Pr(y(k)|x(k);w)

57/84



Computing the Gradient in CRFs

Consider a parameter wj and its associated feature fj :

∂L(w)

∂wj
=

1

m

m∑

k=1




observed︷ ︸︸ ︷
fj(x

(k),y(k))−

expected︷ ︸︸ ︷∑

y∈Y∗
Pr(y|x(k);w) fj(x

(k),y)




where

fj(x,y) =

n∑

i=1

fj(x, i, yi−1, yi)

I First term: observed value of fj in training examples

I Second term: expected value of fj under current w

I In the optimal, observed = expected
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Computing the Gradient in CRFs

I The first term is easy to compute, by counting explicitly

∑

i

fj(x, i, y
(k)
i−1, y

(k)
i )

I The second term is more involved,

∑

y∈Y∗
Pr(y|x(k);w)

∑

i

fj(x
(k), i, yi−1, yi)

because it sums over all sequences y ∈ Yn

I But there is an efficient solution . . .
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Computing the Gradient in CRFs

I For an example (x(k),y(k)):

∑

y∈Yn

Pr(y|x(k);w)

n∑

i=1

fj(x
(k), i, yi−1, yi) =

n∑

i=1

∑

a,b∈Y
µki (a, b)fj(x

(k), i, a, b)

I µki (a, b) is the marginal probability of having labels (a, b) at position i:

µki (a, b) = Pr(〈i, a, b〉 | x(k);w) =
∑

y∈Yn : yi−1=a, yi=b

Pr(y|x(k);w)

I The quantities µki can be computed efficiently in O(nL2) using the forward-backward
algorithm
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CRFs: summary so far

I Log-linear models for sequence prediction, Pr(y|x;w)

I Computations factorize on label bigrams

I Model form:
argmax
y∈Y∗

∑

i

w · f(x, i, yi−1, yi)

I Prediction: uses Viterbi
I Parameter estimation:

I Gradient-based methods, in practice L-BFGS
I Computation of gradient uses forward-backward
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CRFs: summary so far

I Log-linear models for sequence prediction, Pr(y|x;w)

I Computations factorize on label bigrams

I Model form:
argmax
y∈Y∗

∑

i

w · f(x, i, yi−1, yi)

I Prediction: uses Viterbi
I Parameter estimation:

I Gradient-based methods, in practice L-BFGS
I Computation of gradient uses forward-backward

I Next Question: Local Loss or CRFs?
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Local vs. Global Log-linear Losses

Local Loss: Pr(y | x) =

n∏

i=1

exp {w · f(x, i, yi−1, yi)}
Z(x, i, yi−1;w)

CRFs: Pr(y | x) =
exp {∑n

i=1 w · f(x, i, yi−1, yi)}
Z(x)

I Both exploit the same factorization, i.e. same features

I Same computations to compute argmaxy Pr(y | x)

I Local loss is locally normalized; CRFs globally normalized
I Local loss assumes that Pr(yi | x1:n, y1:i−1) = Pr(yi | x1:n, yi−1)
I Leads to “Label Bias Problem” (Lafferty et al., 2001; Andor et al., 2016)

I Local loss is cheaper to train (reduces to multiclass MaxEnt learning)

I CRFs are easier to extend to other structures
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Learning Structure Predictors: summary so far

I Linear models for sequence prediction

argmax
y∈Y∗

∑

i

w · f(x, i, yi−1, yi)

I Computations factorize on label bigrams
I Decoding: using Viterbi
I Marginals: using forward-backward

I Parameter estimation:
I Perceptron, Log-likelihood, SVMs
I Extensions from classification to the structured case
I Optimization methods:

I Stochastic (sub)gradient methods (LeCun et al., 1998; Shalev-Shwartz et al., 2011)
I Exponentiated Gradient (Collins et al., 2008)
I SVM Struct (Tsochantaridis et al., 2005)
I Structured MIRA (Crammer et al., 2005)
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Dependency Parsing

65/84



Dependency Trees

* PRP VBN DT NN IN NN
They solved the problem with statistics

root

subj

dobj

det

prep

pobj

* PRP VBN DT NN IN NN
They solved the problem with statistics

root

subj

dobj

det nmod pobj
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Theories of Syntactic Structure

Dependency Trees

* PRP VBN DT NN IN NN
They solved the problem with statistics

root

nsubj

dobj

det nmod pobj

I Main element: dependency

I Focus on relations between words

Constituent Trees
S

NP

They

VP

V

solved

NP

NP

the problem

PP

with statistics

I Main element: constituents (or phrases, or
bracketings)

I Constituents = abstract linguistic units

I Results in nested trees
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Dependency Parsing: Arc-factored models
McDonald, Pereira, Ribarov, and Hajič (2005)

Dependency Parsing: arc-factored models

(McDonald et al. 2005)

liked today* John saw a movie that he

! Parse trees decompose into single dependencies 〈h, m〉

argmax
y∈Y(x)

∑

〈h,m〉∈y

w · f(x, h, m)

! Some features: f1(x, h, m) = [ ”saw” → ”movie” ]
f2(x, h, m) = [ distance = +2 ]

! Tractable inference algorithms exist (tomorrow’s lecture)

I Parse trees decompose into single dependencies 〈h,m〉

argmax
y∈Y(x)

∑

〈h,m〉∈y
w · f(x, h,m)

I Each arc or dependency (h,m) is scored independently of each other

I Some features: f1(x, h,m) = [ ”saw” → ”movie” ]
f2(x, h,m) = [ distance = +2 ]

I Tractable inference algorithms exist
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Features in Arc-Factored Dependency Parsing
f(x, h,m, l): a vector of features of (h,m, l) assigned to x

I As in sequence prediction, we typically use indicator features

I Templates in McDonald et al. (2005):

word features
h-word, h-pos

h-word

h-pos

m-word, m-pos

m-word

m-pos

dependency features
h-word, h-pos, m-word, m-pos

h-pos, m-word, m-pos

h-word, m-word, m-pos

h-word, h-pos, m-pos

h-word, h-pos, m-word

h-word, m-word

h-pos, m-pos

I Example: (feature template + dependency direction)

fj(x, h,m, l) =


1 if word(h) =solve and word(m) =problem

and l =dobj and h < m
0 otherwise
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MST Parsing for Arc-factored models
McDonald, Pereira, Ribarov, and Hajič (2005)

I Parsing problem, given a sentenc x:

argmax
y∈Y(x)

∑

〈h,m〉∈y
score(x, h,m)

I Can be formulated as a directed Maximum Spanning Tree (MST) problem:

I The Chu-Liu-Edmonds algorithm finds the optimal tree in O(n2)
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The Eisner Algorithm for Arc-factored models
Eisner (1996); McDonald and Pereira (2006); Carreras (2007); Koo and Collins (2010)

(illustration by Joakim Nivre)

I The Eisner (1996) algorithm is a variant of
CKY specific to non-crossing dep trees

I Finds optimal tree in O(n3)

Extension to higher-order parsing:

I First-order O(n3)

I Second-order:

I Horizontal O(n3) (McDonald and Pereira, 2006)

I Vertical O(n4) (Carreras, 2007)

I Third-order O(n4) (Koo and Collins, 2010)
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Experiments with Higher-Order and Word Cluster Features
Koo, Carreras, and Collins (2008)
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Transition-based Parsing: Nivre’s Arc-Standard System
Nivre (2008)

I State:
I Buffer: list of upcoming words to be parsed
I Stack: stack of subtrees that are already parsed

I Parsing actions:
I Shift: shift next word in the buffer to the task
I Left-arc (l): add a left arc between the two top subtrees of the stack, with label l
I Right-arc (l): add a right arc between the two top subtrees of the stack, with label l

I Parsing is linear in the sentence length, very fast! But prone to greedy mistakes!
I Parsing model: score a candidate action in the context of a state

I Has access to the full sentence and the full history of actions
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Arc-Standard Parsing: Example
(illustration by Miguel Ballesteros)
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Arc-Standard Parsing: Example
(illustration by Miguel Ballesteros)

74/84



Arc-Standard Parsing: Example
(illustration by Miguel Ballesteros)

74/84



Arc-Standard Parsing: Example
(illustration by Miguel Ballesteros)

74/84



Arc-Standard Parsing: Example
(illustration by Miguel Ballesteros)

74/84



Arc-Standard Parsing: Example
(illustration by Miguel Ballesteros)

74/84



Arc-Standard Parsing: Example
(illustration by Miguel Ballesteros)
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Arc-Standard Parsing: Example
(illustration by Miguel Ballesteros)
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Features in Transition-based Dependency Parsing
(slide by Joakim Nivre)

I Features in f(x, buffer B, stack S,past actions A, candidate action a):
I Words in the stack S and the buffer B
I Partial subtrees in the stack S (higher-order)
I Sequence of previous actions A (higher-order)

I Neural nets are effective at encoding all these structures into feature vectors
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Linear (Structured) Prediction

I Multiclass classification
argmax

y∈{1,...,L}
w · f(x,y)

I Sequence prediction (bigram factorization)

argmax
y∈Y(x)

w · f(x,y) = argmax
y∈Y(x)

∑

i

w · f(x, i,yi−1,yi)

I Dependency parsing (arc-factored)

argmax
y∈Y(x)

w · f(x,y) = argmax
y∈Y(x)

∑

〈h,m,l〉∈y

w · f(x, h,m, l)

I Factored models: Applicable to other tasks and factorizations

I Alternative: transition systems (very fast and expressive, but prone to search errors)
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Factored Sequence Prediction: from Linear to Non-linear

score(x,y) =
∑

i

s(x, i, yi−1, yi)

I Linear:
s(x, i, yi−1, yi) = w · f(x, i,yi−1,yi)

I Non-linear, using a feed-forward neural network:

s(x, i, yi−1, yi) = w · [eyi−1,yi ⊗ h(f(x, i))]

where:
h(f(x, i)) = σ(W 2σ(W 1σ(W 0f(x, i))))

I Remarks:
I The non-linear model computes a hidden representation of the input
I Still factored: Viterbi and Forward-Backward work
I Parameter estimation becomes non-convex, use backpropagation
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Recurrent Sequence Prediction

. . .

x2 xnx3x1

y1 y2 y3 yn

h1 h2 h3 hn

I Induction of hidden vectors (i.e. embeddings) that keep track of previous observations
and predictions

I Making predictions is not tractable
I In practice: greedy predictions or beam search
I Making predictions was not tractable for transition systems either!

I Learning is non-convex, so what?
I Popular methods: RNN, LSTM, Spectral Models, . . .
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Thanks!
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