
Structured Prediction in NLP

Xavier Carreras

https://dmetrics.com

1/84

https://dmetrics.com

Supervised (Structured) Prediction

I Learning to predict: given training data
{

(x(1),y(1)), (x(2),y(2)), . . . , (x(m),y(m))
}

learn a predictor x→ y that works well on unseen inputs x

I Non-Structured Prediction: outputs y are atomic
I Binary prediction: y ∈ {−1,+1}
I Multiclass prediction: y ∈ {1, 2, . . . , L}

I Structured Prediction: outputs y are structured
I Sequence prediction: y are sequences
I Parsing: y are trees
I . . .

2/84

Named Entity Recognition

y per - qnt - - org org - time
x Jim bought 300 shares of Acme Corp. in 2006

y per per - - loc
x Jack London went to Paris

y per per - - loc
x Paris Jackson went to London

y per - - loc
x Jackie went to Lisdon

3/84

Named Entity Recognition

y per - qnt - - org org - time
x Jim bought 300 shares of Acme Corp. in 2006

y per per - - loc
x Jack London went to Paris

y per per - - loc
x Paris Jackson went to London

y per - - loc
x Jackie went to Lisdon

3/84

Part-of-speech Tagging

y NNP NNP VBZ NNP .
x Ms. Haag plays Elianti .

4/84

Syntactic Dependency Parsing

? Unesco is now holding its biennial meetings in New York .

ROOT

SBJ TMP

VC NMOD

NMOD

OBJ

LOC

NAME

PMOD

P

x are sentences
y are syntactic dependency trees

5/84

Machine Translation

(illustration by Ben Taskar)

x are sentences in some source language (e.g. French)
y are sentence translations in a target language (e.g. English)

6/84

Object Detection

(Kumar and Hebert, 2003)

x are images
y are grids labeled with object types

7/84

Object Detection

(Kumar and Hebert, 2003)

x are images
y are grids labeled with object types

7/84

Today’s Goals

I Introduce basic concepts for structured prediction
I We will focus on sequence prediction
I Quick overview of dependency parsing

I What can we can borrow from standard classification?
I Learning paradigms and algorithms, in essence, work here too
I However, computations behind algorithms are prohibitive

I Today’s main topics:
I Transition systems versus factored models
I Feature representations of structured input-output pairs
I Prediction algorithms
I Learning algorithms: Perceptron and CRF
I Local and global learning losses

8/84

Outline

Sequence Prediction
Transition-based Sequence Prediction
Factored Sequence Prediction
Algorithms for Factored Models
Log-linear Factored Models

Learning
The Learner’s Game
Structured Perceptron
Log-linear Models and CRFs

Dependency Parsing
Arc-factored Models
Transition-based Parsing

Summary

9/84

Sequence Prediction

y per per - - loc
x Jack London went to Paris

10/84

Sequence Prediction

I x = x1x2 . . . xn are input sequences, xi ∈ X
I y = y1y2 . . . yn are output sequences, yi ∈ {1, . . . , L}

I Goal: given training data

{
(x(1),y(1)), (x(2),y(2)), . . . , (x(m),y(m))

}

learn a predictor x→ y that works well on unseen inputs x

I What is the form of our prediction model?

11/84

Exponentially-many Solutions

I Let Y = {-,per, loc}

I The solution space (all output sequences):

Jack London went to Paris

-

per

loc

-

per

loc

-

per

loc

-

per

loc

-

per

loc

I Each path is a possible solution

I For an input sequence of size n, there are |Y|n possible outputs

12/84

Exponentially-many Solutions

I Let Y = {-,per, loc}

I The solution space (all output sequences):

Jack London went to Paris

-

per

loc

-

per

loc

-

per

loc

-

per

loc

-

per

loc

I Each path is a possible solution

I For an input sequence of size n, there are |Y|n possible outputs

12/84

Approach 1: Label Classifiers

I Multiclass prediction over individual labels at each position

ŷt = argmax
l ∈ {loc, per, -}

score(x, t, l)

I For linear models, score(x, i, l) = w · f(x, t, l)
I f(x, t, l) ∈ Rd represents an assignment of label l for xt
I w ∈ Rd is a vector of parameters (learned), has a weight for each feature in f

I Can capture interactions between full input sequence x and one output label l
e.g.: current word, surrounding words, capitalization, prefix-suffix, gazetteer, . . .

I Can not capture interactions between output labels!
13/84

Approach 2: Transition-based Sequence Prediction

I Predict one label at a time, left-to-right, using previous predictions:

ŷt = argmax
l ∈ {loc, per, -}

score(x, t, l, ŷ1:t−1)

I Captures interactions between full input x and prefixes of the output sequence
I Prediction of ŷ is approximate (greedy, beam search)

I Why left-to-right and not right-to-left?

14/84

Approach 3: Factored Sequence Prediction

I At each position, multiclass prediction over label bigrams (pairs of adjacent labels):

ŷ = argmax
y ∈ Yn

score(x,y) = argmax
y ∈ Yn

n∑

i=1

score(x, i, yi−1, yi)

I Output sequence factored into label bigrams

I Captures interactions between full input x and factors of output sequence

I Prediction is tractable for many types of factorizations

15/84

Approach 4: Re-Ranking

ŷ = argmax
y ∈ A(Yn)

score(x,y)

I Scoring of full inputs and outputs: very expressive!

I Relies on an active set A(Yn) of full outputs, enumerated exhaustively
I A base model is used to select active set

I The base model follows one of the previous approaches
16/84

Sequence Prediction: Summary of Approaches

take home message 1: the expressivity-tractability trade-off exists
take home message 2: always pick the simplest approach that suits the task at hand

17/84

Sequence Prediction: Summary of Approaches

take home message 1: the expressivity-tractability trade-off exists
take home message 2: always pick the simplest approach that suits the task at hand

17/84

Sequence Prediction: Summary of Approaches

take home message 1: the expressivity-tractability trade-off exists
take home message 2: always pick the simplest approach that suits the task at hand

17/84

Greedy Sequence Prediction

I Run a greedy classifier left-to-right:
I For t = 1 . . . n:

ŷt = argmax
l ∈ {loc, per, -}

score(x, t, l, ŷ1:t−1)

I What is the form of score(x, t, l, ŷ1:t−1)?
I We focus on linear scoring functions: score(x, t, l, ŷ1:t−1) = w · f(x, t, l, ŷ1:t−1)

18/84

Representations in Greedy Sequence Prediction

I In linear greedy sequence prediction, at time t

score(x, t, l, ŷ1:t−1) = w · f(x, t, l, ŷ1:t−1)

I w ∈ Rd is a parameter vector, to be learned

I f(x, t, l, ŷ1:t−1) ∈ Rd is a feature vector

I Goal: guess the correct l at position t
I How to construct f(x, t, l, ŷ1:t−1)?

I New trend: representation learning
I Old school: manually with feature templates

19/84

Representations in Greedy Sequence Prediction

I In linear greedy sequence prediction, at time t

score(x, t, l, ŷ1:t−1) = w · f(x, t, l, ŷ1:t−1)

I w ∈ Rd is a parameter vector, to be learned

I f(x, t, l, ŷ1:t−1) ∈ Rd is a feature vector

I Goal: guess the correct l at position t
I How to construct f(x, t, l, ŷ1:t−1)?

I New trend: representation learning
I Old school: manually with feature templates

19/84

Indicator Features for One Label Only

I f(x, t, l) is a vector of d features representing label l for xt
I What’s in a feature fj(x, t, l)?

I Anything we can compute using x and t and l
I Anything that indicates whether l is (not) a good label for xt

I Indicator features: binary-valued features looking at:
I a simple pattern of x and target position t
I and the candidate label l for position t

fj(x, t, l) =

{
1 if xt =London and l =loc
0 otherwise

fk(x, t, l) =

{
1 if xt+1 =went and l =loc
0 otherwise

I Indicator features produce sparse feature vectors

20/84

Feature Templates

I Feature templates generate many indicator features
I A feature template is identified by a type, and a number of values

I Example: template word indicates the current word

f〈word,a,w〉(x, t, l) =

{
1 if xt = w and l = a
0 otherwise

I A feature of this type is identified by the tuple 〈word, a, w〉
I Generates a feature for every label a ∈ Y and every word w

I Feature vectors and weight vectors are indexed by feature tuples

I In feature-based models:
I Define feature templates manually
I Instantiate the templates on every set of values in the training data
→ generates a very high-dimensional feature space

I Define parameter vector w indexed by such feature tuples
I Let the learning algorithm choose the relevant features

21/84

Feature Templates

I Feature templates generate many indicator features
I A feature template is identified by a type, and a number of values

I Example: template word indicates the current word

f〈word,a,w〉(x, t, l) =

{
1 if xt = w and l = a
0 otherwise

I A feature of this type is identified by the tuple 〈word, a, w〉
I Generates a feature for every label a ∈ Y and every word w

I Feature vectors and weight vectors are indexed by feature tuples
I In feature-based models:

I Define feature templates manually
I Instantiate the templates on every set of values in the training data
→ generates a very high-dimensional feature space

I Define parameter vector w indexed by such feature tuples
I Let the learning algorithm choose the relevant features

21/84

More Features for NE Recognition

per
Jack London went to Paris

In practice, construct f(x, t, l) by . . .

I Define a number of simple patterns of x and t

I current word xt
I is xt capitalized?
I xt has digits?
I prefixes/suffixes of size 1, 2, 3, . . .
I is xt a known location?
I is xt a known person?

I next word
I previous word
I current and next words

together
I other combinations

I Define feature templates by combining patterns with labels l

I Generate actual features by instantiating templates on training data

22/84

Feature Templates in Greedy Sequence Prediction

y per per -
x Jack London went to Paris

I f(x, t, l, ŷ1:t−1) has access to all preceding labels

I Example: A template for word + current label + previous label:

f〈wb,a,b,w〉(x, t, l, ŷ1:t−1) =

1 if xt = w and
ŷt−1 = a and l = b

0 otherwise

I In practice:
I Preceeding labels next to t
I Bag-of-labels in ŷ1:t−1
I Combinations with other features

I Neural networks automatically induce “good” features out of x and ŷ1:t−1
23/84

Transition Systems (general form)

I Given an input x, a transition system defines:
I A set of states S(x)
I An initial state s0 ∈ S(x), and a set of final states S∞ ⊆ S(x)
I A set of allowed actions A(s,x) for all s ∈ S(x)
I A transition function transition : s× a→ s′

I A scoring function: score : x× s× a→ R
I To predict output y from input x:

I s = s0
I while s 6∈ S∞:

I a = argmaxa∈A(s,x) score(x, s, a)
I s = transition(s, a)

I extract y from s

I Simple, very fast and expressive! Very popular in NLP:
I Greedy sequence prediction (one label at a time, left-to-right or right-to-left)
I Shift-reduce parsing (more later)
I Word segmentation, machine translation, . . .

24/84

Greedy Predictions are not Optimal, even with Beam Search

I Greedy sequence predictions can not undo decisions at a later stage

I Sometimes the model is right at a global scope, but not at each greedy step!
I Solution: Beam Search

I General local search method
I Maintains several good hypotheses, instead of just the best one
I Many strategies, sometimes specific to the task and transition system
I Empirically, it often improves over greedy search

25/84

Greedy Predictions are not Optimal, even with Beam Search

I Greedy sequence predictions can not undo decisions at a later stage

I Sometimes the model is right at a global scope, but not at each greedy step!
I Solution: Beam Search

I General local search method
I Maintains several good hypotheses, instead of just the best one
I Many strategies, sometimes specific to the task and transition system
I Empirically, it often improves over greedy search

25/84

Factored Sequence Predictors

ŷ = argmax
y ∈ Yn

n∑

i=1

score(x, i, yi−1, yi)

Next questions:

I What is the form of score(x, i, a, b)?
We will use linear scoring functions: score(x, i, a, b) = w · f(x, i, a, b)

I There are exponentially-many sequences y for a given x,
how do we solve the argmax problem?

26/84

Representations Factored at Bigrams

y: per per - - loc
x: Jack London went to Paris

I score(x, i, a, b) = w · f(x, i, a, b)
I f(x, i, yi−1, yi)

I A d-dimensional feature vector of a label bigram at i
I Each dimension is typically a boolean indicator (0 or 1)

I f(x,y) =
∑n

i=1 f(x, i, yi−1, yi)
I A d-dimensional feature vector of the entire y
I Aggregated representation by summing bigram feature vectors
I Each dimension is now a count of a feature pattern

27/84

Representations Factored at Bigrams

y: per per - - loc
x: Jack London went to Paris

I score(x, i, a, b) = w · f(x, i, a, b)
I f(x, i, yi−1, yi)

I A d-dimensional feature vector of a label bigram at i
I Each dimension is typically a boolean indicator (0 or 1)

I f(x,y) =
∑n

i=1 f(x, i, yi−1, yi)
I A d-dimensional feature vector of the entire y
I Aggregated representation by summing bigram feature vectors
I Each dimension is now a count of a feature pattern

27/84

Linear Factored Sequence Prediction

argmax
y∈Yn

w · f(x,y) where f(x,y) =

n∑

i=1

f(x, i, yi−1, yi)

I Note the linearity of the expression:
score(x,y) = w · f(x,y)

= w ·
n∑

i=1

f(x, i, yi−1, yi)

=

n∑

i=1

w · f(x, i, yi−1, yi)

=

n∑

i=1

score(x, i, yi−1, yi)

28/84

Predicting with Factored Sequence Models

I Assume we have a score function score(x, i, a, b)

I Given x1:n find:

argmax
y∈Yn

n∑

i=1

score(x, i, yi−1, yi)

I Use the Viterbi algorithm, takes O(n|Y|2)

I Notational change: since x1:n is fixed we will use

s(i, a, b) = score(x, i, a, b)

29/84

Viterbi for Factored Sequence Models
I Given scores s(i, a, b) for each position i and output bigram a, b, find:

argmax
y∈Yn

n∑

i=1

s(i, yi−1, yi)

I Intuition: consider this example x and two alternative solutions y and y′:
1 2 3 4 5

x Jack London went to Paris
y per loc - - loc
y′ per per - - loc

I What is the score of y′ relative to the score of y?

s(x,y′) = s(x,y) +

s(2,per, per)

−

s(2,per, loc)

+

s(3, loc, -)

−

s(3,per, -)

output sequences that share bigrams also share scores

30/84

Viterbi for Factored Sequence Models
I Given scores s(i, a, b) for each position i and output bigram a, b, find:

argmax
y∈Yn

n∑

i=1

s(i, yi−1, yi)

I Intuition: consider this example x and two alternative solutions y and y′:
1 2 3 4 5

x Jack London went to Paris
y per loc - - loc
y′ per per - - loc

I What is the score of y′ relative to the score of y?

s(x,y′) = s(x,y) +s(2,per, per)− s(2,per, loc)

+s(3, loc, -)− s(3,per, -)

output sequences that share bigrams also share scores

30/84

Viterbi recurrence

I Viterbi is a dynamic programming algorithm that uses the following recurrence

I Assume that, for a certain position i and each label l ∈ Y, we have the best
sub-sequence from positions 1 to i ending with label l:

1 . . . i i+ 1

best subsequence with yi = per

best subsequence with yi = loc

best subsequence with yi = –

s(i+1,per, loc)

s(i+1,loc, loc)

s(i
+1,–

, lo
c)

I What is the best sequence up to position i+ 1 with yi+1 =loc?

31/84

Viterbi recurrence

I Viterbi is a dynamic programming algorithm that uses the following recurrence

I Assume that, for a certain position i and each label l ∈ Y, we have the best
sub-sequence from positions 1 to i ending with label l:

1 . . . i i+ 1

best subsequence with yi = per

best subsequence with yi = loc

best subsequence with yi = –

s(i+1,per, loc)

s(i+1,loc, loc)

s(i
+1,–

, lo
c)

I What is the best sequence up to position i+ 1 with yi+1 =loc?

31/84

Viterbi recurrence

I Viterbi is a dynamic programming algorithm that uses the following recurrence

I Assume that, for a certain position i and each label l ∈ Y, we have the best
sub-sequence from positions 1 to i ending with label l:

1 . . . i i+ 1

best subsequence with yi = per

best subsequence with yi = loc

best subsequence with yi = –

s(i+1,per, loc)

s(i+1,loc, loc)

s(i
+1,–

, lo
c)

I What is the best sequence up to position i+ 1 with yi+1 =loc?

31/84

Viterbi for Factored Sequence Models

ŷ = argmaxy∈Yn

∑n
i=1 s(i, yi−1, yi)

I Definition: score of optimal sequence for x1:i ending with a ∈ Y

δ(i, a) = max
y∈Yi:yi=a

i∑

j=1

s(j, yj−1, yj)

I Use the following recursions, for all a ∈ Y, for i = 2 . . . n:

δ(1, a) = s(1, y0 = null, a)

δ(i, a) = max
b∈Y

δ(i− 1, b) + s(i, b, a)

I The optimal score for x is maxa∈Y δ(n, a)

I The optimal sequence ŷ can be recovered through back-pointers

I Cost: O(n|Y|2)

32/84

Viterbi for Factored Sequence Models

ŷ = argmaxy∈Yn

∑n
i=1 s(i, yi−1, yi)

I Definition: score of optimal sequence for x1:i ending with a ∈ Y

δ(i, a) = max
y∈Yi:yi=a

i∑

j=1

s(j, yj−1, yj)

I Use the following recursions, for all a ∈ Y, for i = 2 . . . n:

δ(1, a) = s(1, y0 = null, a)

δ(i, a) = max
b∈Y

δ(i− 1, b) + s(i, b, a)

I The optimal score for x is maxa∈Y δ(n, a)

I The optimal sequence ŷ can be recovered through back-pointers

I Homework: rewrite the Viterbi equations such that the algorithm proceeds right-to-left.
Observe that the factored model remains the same (i.e. it is not a directional model)

32/84

Variations of Viterbi

I Sparse Viterbi
I Only a few labels in Y apply to a position
I Only a few label bigrams are possible
I A sparse implementation cuts the O(|Y|2) factor

I Higher-order Viterbi: factorize at trigrams instead of bigrams
I Cost O(n|Y|3)
I Very common in POS tagging (using sparse Viterbi to cut the O(|Y|3) cost factor)

I k-best Viterbi: return the best k sequences (not just the single best)
I Used in re-ranking approaches and some loss functions

I Forward-Backward: Viterbi for sum-product computations (instead of max-sum)

33/84

Forward-Backward Max-Sum Computations

I The Viterbi algorithm solves a max-sum recurrence

max
y∈Yn

n∑

i=1

s(i, yi−1, yi)

I The sum-product recurrence is also very useful (more later)

∑

y∈Yn

n∏

i=1

s(i, yi−1, yi)

I The same style of dynamic programming works

34/84

Forward Algorithm

∑

y∈Yn

n∏

i=1

s(i, yi−1, yi)

I Definition: forward quantities

α(i, a) =
∑

y1:i∈Yi:yi=a

∏i
j=1 s(j, yj−1, yj)

I Use the following recursions, for all a ∈ Y, for i = 2 . . . n:

α(i, a) = s(1, y0 = null, a)

α(i, a) =
∑

b∈Y

α(i− 1, b) ∗ s(i, b, a)

I The total sum-product is
∑

a α(n, a)

I Like Viterbi, the forward algorithm runs in O(n|Y|2)

35/84

Backward Algorithm

∑

y∈Yn

n∏

i=1

s(i, yi−1, yi)

I Definition: backward quantities

β(i, a) =
∑

yi:n∈Y(n−i+1):yi=a

∏n
j=i+1 s(j, yj−1, yj)

I Now the recursions run backwards! For all a ∈ Y, for i = n− 1 . . . 1:

β(n, a) = 1

β(i, a) =
∑

b∈Y

s(i, a, b) ∗ β(i+ 1, b)

I The total sum-product is
∑

a s(1, y0 = null, a) ∗ β(1, a)

I Like Viterbi and forward algorithms, the backward algorithm runs in O(n|Y|2)

36/84

Log-linear Models for Sequence Prediction
I Model the conditional distribution:

Pr(y | x;w) =
exp {w · f(x,y)}

Z(x;w)

where
I f(x,y) represents x and y with d features
I w ∈ Rd are the parameters of the model
I Z(x;w) is a normalizer called the partition function

Z(x;w) =
∑

z∈Y∗

exp {w · f(x, z)}

I To predict the best sequence
argmax
y∈Yn

Pr(y|x)

37/84

Log-linear Models: Name

I Let’s take the log of the conditional probability:

log Pr(y | x;w) = log
exp{w · f(x,y)}

Z(x;w)

= w · f(x,y)− log
∑

y

exp{w · f(x,y)}

= w · f(x,y)− logZ(x;w)

I Partition function: Z(x;w) =
∑

z exp{w · f(x, z)}
I logZ(x;w) is a constant for a fixed x

I In the log space, computations are linear,
i.e., we model log-probabilities using a linear predictor

38/84

Making Predictions with Log-Linear Models
I For tractability, assume f(x,y) decomposes into bigrams:

f(x1:n,y1:n) =

n∑

i=1

f(x, i, yi−1, yi)

I Given w, given x1:n, find:

argmax
y1:n

Pr(y1:n|x1:n;w) = amax
y

exp {∑n
i=1w · f(x, i, yi−1, yi)}

Z(x;w)

= amax
y

exp

{
n∑

i=1

w · f(x, i, yi−1, yi)
}

= amax
y

n∑

i=1

w · f(x, i, yi−1, yi)

I We can use the Viterbi algorithm
39/84

Making Predictions with Log-Linear Models
I For tractability, assume f(x,y) decomposes into bigrams:

f(x1:n,y1:n) =

n∑

i=1

f(x, i, yi−1, yi)

I Given w, given x1:n, find:

argmax
y1:n

Pr(y1:n|x1:n;w) = amax
y

exp {∑n
i=1w · f(x, i, yi−1, yi)}

Z(x;w)

= amax
y

exp

{
n∑

i=1

w · f(x, i, yi−1, yi)
}

= amax
y

n∑

i=1

w · f(x, i, yi−1, yi)

I We can use the Viterbi algorithm
39/84

Probability of an Output Sequence given an Input Sequence

I Given x and y, compute Pr(y | x;w) = exp{w·f(x,y)}
Z(x;w)

I To compute Z(x;w) we need to sum over Yn!

I But with some algebraic massaging: (let s(i, yi−1, yi) = w · f(x, i, yi−1, yi))

Z(x;w) =
∑

y

exp{w · f(x,y)}

=
∑

y

exp

{
n∑

i=1

s(i, yi−1, yi)

}

=
∑

y

n∏

i=1

exp {s(i, yi−1, yi)}

I Z(x;w) is a sum-product computation: forward algorithm (with exponentiated scores)!

I Z(x;w) =
∑

a α(n, a)

40/84

Marginal Probability of a Single Label

I What’s the probability that token i has label a?

I We need to compute the marginal distribution of yi:

µi(a) = Pr(yi = a|x;w) =
∑

y∈Yn:yi=a

Pr(y|x;w)

= (algebraic massaging)

=
α(i, a) ∗ β(i, a)

Z(x;w)

I Use forward-backward (using exponentiated scores)

I Recall that Z(x;w) =
∑

l α(n, l)

41/84

Marginal Probability of a Single Label

I What’s the probability that token i has label a?

I We need to compute the marginal distribution of yi:

µi(a) = Pr(yi = a|x;w) =
∑

y∈Yn:yi=a

Pr(y|x;w)

= (algebraic massaging)

=
α(i, a) ∗ β(i, a)

Z(x;w)

I Use forward-backward (using exponentiated scores)
I Recall that Z(x;w) =

∑
l α(n, l)

41/84

Marginal Probability of a Label Bigram

I What’s the probability that token i− 1 has label a and token i has label b?

I We need to compute the marginal distribution of label bigrams at position i:

µi(a, b) = Pr(yi−1 = a, yi = b|x;w) =
∑

y∈Yn:yi−1=a,yi=b

Pr(y|x;w)

= (algebraic massaging)

=
α(i− 1, a) ∗ exp{w · f(x, i, a, b)} ∗ β(i, b)

Z(x;w)

I Again forward-backward (using exponentiated scores)
I Recall that Z(x;w) =

∑
l α(n, l)

42/84

Marginal Probability of a Label Bigram

I What’s the probability that token i− 1 has label a and token i has label b?

I We need to compute the marginal distribution of label bigrams at position i:

µi(a, b) = Pr(yi−1 = a, yi = b|x;w) =
∑

y∈Yn:yi−1=a,yi=b

Pr(y|x;w)

= (algebraic massaging)

=
α(i− 1, a) ∗ exp{w · f(x, i, a, b)} ∗ β(i, b)

Z(x;w)

I Again forward-backward (using exponentiated scores)
I Recall that Z(x;w) =

∑
l α(n, l)

42/84

Linear Factored Sequence Prediction

argmax
y∈Yn

w · f(x,y)

I Factored representation, e.g. based on bigrams

f(x,y) =

n∑

i=1

f(x, i, yi−1, yi)

I Flexible, arbitrary features of full x and the factors
I Efficient prediction using Viterbi
I In probabilistic models, efficient computation of marginals using Forward-Backward
I Next, learning w:

I The Structured Perceptron
I Probabilistic log-linear models:

I Local learning, a.k.a. Maximum-Entropy Markov Models
I Global learning, a.k.a. Conditional Random Fields

43/84

Outline

Sequence Prediction
Transition-based Sequence Prediction
Factored Sequence Prediction
Algorithms for Factored Models
Log-linear Factored Models

Learning
The Learner’s Game
Structured Perceptron
Log-linear Models and CRFs

Dependency Parsing
Arc-factored Models
Transition-based Parsing

Summary

44/84

Learning Structured Predictors

Perceptron, Log-Linear Models and CRFs

45/84

The Learner’s Game

Training Data

I per - -
Maria is young

I loc - -
Athens is big

I per - - loc
Jack went to Athens

I loc - -
Argentina is bigger

I per per - - loc loc
Jack London went to South Pacific

I org - - org
Argentina played against Chile

Weight Vector w

w〈Lower,-〉 = +1

w〈Upper,loc〉 = +1
w〈Word,per,Maria〉 = +2
w〈Word,per,Jack〉 = +2
w〈NextW,per,went〉 = +2
w〈NextW,org,played〉 = +2
w〈PrevW,org,against〉 = +2
. . .
w〈UpperBigram,per,per〉 = +100
w〈UpperBigram,loc,loc〉 = +100
w〈UpperBigram,loc,per〉 = −100
w〈UpperBigram,per,loc〉 = −100
w〈NextW,loc,played〉 = −1000

46/84

The Learner’s Game

Training Data

I per - -
Maria is young

I loc - -
Athens is big

I per - - loc
Jack went to Athens

I loc - -
Argentina is bigger

I per per - - loc loc
Jack London went to South Pacific

I org - - org
Argentina played against Chile

Weight Vector w

w〈Lower,-〉 = +1

w〈Upper,loc〉 = +1
w〈Word,per,Maria〉 = +2
w〈Word,per,Jack〉 = +2
w〈NextW,per,went〉 = +2
w〈NextW,org,played〉 = +2
w〈PrevW,org,against〉 = +2
. . .
w〈UpperBigram,per,per〉 = +100
w〈UpperBigram,loc,loc〉 = +100
w〈UpperBigram,loc,per〉 = −100
w〈UpperBigram,per,loc〉 = −100
w〈NextW,loc,played〉 = −1000

46/84

The Learner’s Game

Training Data

I per - -
Maria is young

I loc - -
Athens is big

I per - - loc
Jack went to Athens

I loc - -
Argentina is bigger

I per per - - loc loc
Jack London went to South Pacific

I org - - org
Argentina played against Chile

Weight Vector w

w〈Lower,-〉 = +1
w〈Upper,per〉 = +1

w〈Upper,loc〉 = +1
w〈Word,per,Maria〉 = +2
w〈Word,per,Jack〉 = +2
w〈NextW,per,went〉 = +2
w〈NextW,org,played〉 = +2
w〈PrevW,org,against〉 = +2
. . .
w〈UpperBigram,per,per〉 = +100
w〈UpperBigram,loc,loc〉 = +100
w〈UpperBigram,loc,per〉 = −100
w〈UpperBigram,per,loc〉 = −100
w〈NextW,loc,played〉 = −1000

46/84

The Learner’s Game

Training Data

I per - -
Maria is young

I loc - -
Athens is big

I per - - loc
Jack went to Athens

I loc - -
Argentina is bigger

I per per - - loc loc
Jack London went to South Pacific

I org - - org
Argentina played against Chile

Weight Vector w

w〈Lower,-〉 = +1

((((((((
w〈Upper,per〉 = +1
w〈Upper,loc〉 = +1

w〈Word,per,Maria〉 = +2
w〈Word,per,Jack〉 = +2
w〈NextW,per,went〉 = +2
w〈NextW,org,played〉 = +2
w〈PrevW,org,against〉 = +2
. . .
w〈UpperBigram,per,per〉 = +100
w〈UpperBigram,loc,loc〉 = +100
w〈UpperBigram,loc,per〉 = −100
w〈UpperBigram,per,loc〉 = −100
w〈NextW,loc,played〉 = −1000

46/84

The Learner’s Game

Training Data

I per - -
Maria is young

I loc - -
Athens is big

I per - - loc
Jack went to Athens

I loc - -
Argentina is bigger

I per per - - loc loc
Jack London went to South Pacific

I org - - org
Argentina played against Chile

Weight Vector w

w〈Lower,-〉 = +1

((((((((
w〈Upper,per〉 = +1
w〈Upper,loc〉 = +1
w〈Word,per,Maria〉 = +2

w〈Word,per,Jack〉 = +2
w〈NextW,per,went〉 = +2
w〈NextW,org,played〉 = +2
w〈PrevW,org,against〉 = +2
. . .
w〈UpperBigram,per,per〉 = +100
w〈UpperBigram,loc,loc〉 = +100
w〈UpperBigram,loc,per〉 = −100
w〈UpperBigram,per,loc〉 = −100
w〈NextW,loc,played〉 = −1000

46/84

The Learner’s Game

Training Data

I per - -
Maria is young

I loc - -
Athens is big

I per - - loc
Jack went to Athens

I loc - -
Argentina is bigger

I per per - - loc loc
Jack London went to South Pacific

I org - - org
Argentina played against Chile

Weight Vector w

w〈Lower,-〉 = +1

((((((((
w〈Upper,per〉 = +1
w〈Upper,loc〉 = +1
w〈Word,per,Maria〉 = +2
w〈Word,per,Jack〉 = +2

w〈NextW,per,went〉 = +2
w〈NextW,org,played〉 = +2
w〈PrevW,org,against〉 = +2
. . .
w〈UpperBigram,per,per〉 = +100
w〈UpperBigram,loc,loc〉 = +100
w〈UpperBigram,loc,per〉 = −100
w〈UpperBigram,per,loc〉 = −100
w〈NextW,loc,played〉 = −1000

46/84

The Learner’s Game

Training Data

I per - -
Maria is young

I loc - -
Athens is big

I per - - loc
Jack went to Athens

I loc - -
Argentina is bigger

I per per - - loc loc
Jack London went to South Pacific

I org - - org
Argentina played against Chile

Weight Vector w

w〈Lower,-〉 = +1

((((((((
w〈Upper,per〉 = +1
w〈Upper,loc〉 = +1
w〈Word,per,Maria〉 = +2
w〈Word,per,Jack〉 = +2
w〈NextW,per,went〉 = +2

w〈NextW,org,played〉 = +2
w〈PrevW,org,against〉 = +2
. . .
w〈UpperBigram,per,per〉 = +100
w〈UpperBigram,loc,loc〉 = +100
w〈UpperBigram,loc,per〉 = −100
w〈UpperBigram,per,loc〉 = −100
w〈NextW,loc,played〉 = −1000

46/84

The Learner’s Game

Training Data

I per - -
Maria is young

I loc - -
Athens is big

I per - - loc
Jack went to Athens

I loc - -
Argentina is bigger

I per per - - loc loc
Jack London went to South Pacific

I org - - org
Argentina played against Chile

Weight Vector w

w〈Lower,-〉 = +1

((((((((
w〈Upper,per〉 = +1
w〈Upper,loc〉 = +1
w〈Word,per,Maria〉 = +2
w〈Word,per,Jack〉 = +2
w〈NextW,per,went〉 = +2
w〈NextW,org,played〉 = +2

w〈PrevW,org,against〉 = +2
. . .
w〈UpperBigram,per,per〉 = +100
w〈UpperBigram,loc,loc〉 = +100
w〈UpperBigram,loc,per〉 = −100
w〈UpperBigram,per,loc〉 = −100
w〈NextW,loc,played〉 = −1000

46/84

The Learner’s Game

Training Data

I per - -
Maria is young

I loc - -
Athens is big

I per - - loc
Jack went to Athens

I loc - -
Argentina is bigger

I per per - - loc loc
Jack London went to South Pacific

I org - - org
Argentina played against Chile

Weight Vector w

w〈Lower,-〉 = +1

((((((((
w〈Upper,per〉 = +1
w〈Upper,loc〉 = +1
w〈Word,per,Maria〉 = +2
w〈Word,per,Jack〉 = +2
w〈NextW,per,went〉 = +2
w〈NextW,org,played〉 = +2
w〈PrevW,org,against〉 = +2

. . .
w〈UpperBigram,per,per〉 = +100
w〈UpperBigram,loc,loc〉 = +100
w〈UpperBigram,loc,per〉 = −100
w〈UpperBigram,per,loc〉 = −100
w〈NextW,loc,played〉 = −1000

46/84

The Learner’s Game

Training Data

I per - -
Maria is young

I loc - -
Athens is big

I per - - loc
Jack went to Athens

I loc - -
Argentina is bigger

I per per - - loc loc
Jack London went to South Pacific

I org - - org
Argentina played against Chile

Weight Vector w

w〈Lower,-〉 = +1

((((((((
w〈Upper,per〉 = +1
w〈Upper,loc〉 = +1
w〈Word,per,Maria〉 = +2
w〈Word,per,Jack〉 = +2
w〈NextW,per,went〉 = +2
w〈NextW,org,played〉 = +2
w〈PrevW,org,against〉 = +2
. . .
w〈UpperBigram,per,per〉 = +100
w〈UpperBigram,loc,loc〉 = +100
w〈UpperBigram,loc,per〉 = −100
w〈UpperBigram,per,loc〉 = −100
w〈NextW,loc,played〉 = −1000

46/84

The Structured Perceptron
Collins (2002)

I Set w = 0

I For t = 1 . . . T
I For each training example (x,y)

1. Compute z = argmaxz w · f(x, z)
2. If z 6= y

w← w + f(x,y)− f(x, z)

I Return w

47/84

The Structured Perceptron + Averaging
Freund and Schapire (1999); Collins (2002)

I Set w = 0, wa = 0

I For t = 1 . . . T
I For each training example (x,y)

1. Compute z = argmaxz w · f(x, z)
2. If z 6= y

w← w + f(x,y)− f(x, z)

3. wa = wa +w

I Return wa/mT , where m is the number of training examples

48/84

Perceptron Updates: Example

y per per - - loc
z per loc - - loc
x Jack London went to Paris

I Let y be the correct output for x.
I Say we predict z instead, under our current w
I The update is:

g = f(x,y)− f(x, z)

=
∑

i

f(x, i, yi−1, yi)−
∑

i

f(x, i, zi−1, zi)

= f(x, 2,per,per)− f(x, 2,per, loc)

+ f(x, 3,per, -)− f(x, 3, loc, -)

I Perceptron updates are typically very sparse
49/84

Properties of the Perceptron

I Online algorithm. Often much more efficient than “batch” algorithms

I If the data is separable, it will converge to parameter values with 0 errors

I Number of errors before convergence is related to a definition of margin. Can also
relate margin to generalization properties

I In practice:

1. Averaging improves performance a lot
2. Typically reaches a good solution after only a few (say 5) iterations over the training set
3. Often performs nearly as well as CRFs, or SVMs

I Structured Perceptron and Beam Search:
I Transition systems can not recover the argmax solution
I Structured Perceptron can use beam search instead (i.e. an approximation to argmax)
I See Collins and Roark (2004); Zhang and Clark (2011); Huang et al. (2012)

50/84

Averaged Perceptron Convergence

Iteration Accuracy
1 90.79
2 91.20
3 91.32
4 91.47
5 91.58
6 91.78
7 91.76
8 91.82
9 91.88

10 91.91
11 91.92
12 91.96
. . .

results on validation set for a parsing task
perceptron with beam search

(Zhang and Clark, 2011)

51/84

Log-linear Models for Sequence Prediction
I Model the conditional distribution:

Pr(y | x;w) =
exp {w · f(x,y)}

Z(x;w)

where
I f(x,y) represents x and y with d features
I w ∈ Rd are the parameters of the model
I Z(x;w) is a normalizer called the partition function

Z(x;w) =
∑

z∈Y∗

exp {w · f(x, z)}

I To predict the best sequence
argmax
y∈Yn

Pr(y|x)

52/84

Parameter Estimation in Log-Linear Models

Pr(y | x;w) =
exp {w · f(x,y)}

Z(x;w)

I Given training data
{

(x(1),y(1)), (x(2),y(2)), . . . , (x(m),y(m))
}

,

I How to estimate w?
I Define the conditional log-likelihood (or cross-entropy) of the data:

L(w) =

m∑

k=1

log Pr(y(k)|x(k);w)

I L(w) measures how well w explains the data. A good value for w will give a high
value for Pr(y(k)|x(k);w) for all k = 1 . . .m.

I We want w that maximizes L(w)
53/84

Parameter Estimation in Log-Linear Models

Pr(y | x;w) =
exp {w · f(x,y)}

Z(x;w)

I Given training data
{

(x(1),y(1)), (x(2),y(2)), . . . , (x(m),y(m))
}

,

I How to estimate w?
I Define the conditional log-likelihood (or cross-entropy) of the data:

L(w) =

m∑

k=1

log Pr(y(k)|x(k);w)

I L(w) measures how well w explains the data. A good value for w will give a high
value for Pr(y(k)|x(k);w) for all k = 1 . . .m.

I We want w that maximizes L(w)
53/84

Learning Log-Linear Models: Loss + Regularization

I Solve:

w∗ = argmin
w∈Rd

Loss︷ ︸︸ ︷
−L(w) +

Regularization︷ ︸︸ ︷
λ

2
||w||2

where
I The first term is the negative conditional log-likelihood
I The second term is a regularization term, it penalizes solutions with large norm
I λ ∈ R controls the trade-off between loss and regularization

I Convex optimization problem → gradient descent
I Two common losses based on log-likelihood that make learning tractable:

I Local Loss (MEMM): assume that Pr(y | x;w) decomposes
I Global Loss (CRF): assume that f(x,y) decomposes

54/84

Learning Log-Linear Models: Loss + Regularization

I Solve:

w∗ = argmin
w∈Rd

Loss︷ ︸︸ ︷
−L(w) +

Regularization︷ ︸︸ ︷
λ

2
||w||2

where
I The first term is the negative conditional log-likelihood
I The second term is a regularization term, it penalizes solutions with large norm
I λ ∈ R controls the trade-off between loss and regularization

I Convex optimization problem → gradient descent
I Two common losses based on log-likelihood that make learning tractable:

I Local Loss (MEMM): assume that Pr(y | x;w) decomposes
I Global Loss (CRF): assume that f(x,y) decomposes

54/84

Local Log-linear Loss (a.k.a. Maximum Entropy Markov Models)
McCallum, Freitag, and Pereira (2000)

I If we apply the chain rule:

Pr(y1:n | x1:n) = Pr(y1 | x1:n)× Pr(y2:n | x1:n, y1)

= Pr(y1 | x1:n)×
n∏

i=2

Pr(yi|x1:n,y1:i−1)

I Markov assumption (the model becomes factored):

Pr(yi|x1:n,y1:i−1) = Pr(yi|x1:n, yi−1)

I Now we can write

Pr(y1:n | x1:n) = Pr(y1|x1:n)×
n∏

i=2

Pr(yi|x1:n,yi−1)

55/84

Parameter Estimation with Local Log-Linear Markov Models

Pr(y1:n | x1:n) = Pr(y1 | x1:n)×
n∏

i=2

Pr(yi|x1:n, i, yi−1)

I The log-linear model is normalized locally (i.e. at each position):

Pr(y | x, i, y′) =
exp{w · f(x, i, y′, y)}

Z(x, i, y′)

I The log-likelihood is also local :

L(w) =

m∑

k=1

n(k)∑

i=1

log Pr(y
(k)
i |x(k), i,y

(k)
i−1)

∂L(w)

∂wj
=

1

m

m∑

k=1

n(k)∑

i=1

observed︷ ︸︸ ︷
fj(x

(k), i,y
(k)
i−1,y

(k)
i)−

expected︷ ︸︸ ︷∑

y∈Y
Pr(y|x(k), i,y

(k)
i−1, y) fj(x

(k), i,y
(k)
i−1, y)

56/84

Conditional Random Fields
Lafferty, McCallum, and Pereira (2001)

I Log-linear model of the conditional distribution:

Pr(y|x;w) =
exp{w · f(x,y)}

Z(x)

where
I x and y are input and output sequences
I f(x,y) is a feature vector of x and y that decomposes into factors
I w are model parameters

I To predict the best sequence

ŷ = argmax
y∈Y∗

Pr(y|x)

I Log-Likelihood at the global (sequence) level:

L(w) =

m∑

k=1

log Pr(y(k)|x(k);w)

57/84

Computing the Gradient in CRFs

Consider a parameter wj and its associated feature fj :

∂L(w)

∂wj
=

1

m

m∑

k=1

observed︷ ︸︸ ︷
fj(x

(k),y(k))−

expected︷ ︸︸ ︷∑

y∈Y∗
Pr(y|x(k);w) fj(x

(k),y)

where

fj(x,y) =

n∑

i=1

fj(x, i, yi−1, yi)

I First term: observed value of fj in training examples

I Second term: expected value of fj under current w

I In the optimal, observed = expected

58/84

Computing the Gradient in CRFs

I The first term is easy to compute, by counting explicitly

∑

i

fj(x, i, y
(k)
i−1, y

(k)
i)

I The second term is more involved,

∑

y∈Y∗
Pr(y|x(k);w)

∑

i

fj(x
(k), i, yi−1, yi)

because it sums over all sequences y ∈ Yn

I But there is an efficient solution . . .

59/84

Computing the Gradient in CRFs

I For an example (x(k),y(k)):

∑

y∈Yn

Pr(y|x(k);w)

n∑

i=1

fj(x
(k), i, yi−1, yi) =

n∑

i=1

∑

a,b∈Y
µki (a, b)fj(x

(k), i, a, b)

I µki (a, b) is the marginal probability of having labels (a, b) at position i:

µki (a, b) = Pr(〈i, a, b〉 | x(k);w) =
∑

y∈Yn : yi−1=a, yi=b

Pr(y|x(k);w)

I The quantities µki can be computed efficiently in O(nL2) using the forward-backward
algorithm

60/84

CRFs: summary so far

I Log-linear models for sequence prediction, Pr(y|x;w)

I Computations factorize on label bigrams

I Model form:
argmax
y∈Y∗

∑

i

w · f(x, i, yi−1, yi)

I Prediction: uses Viterbi
I Parameter estimation:

I Gradient-based methods, in practice L-BFGS
I Computation of gradient uses forward-backward

61/84

CRFs: summary so far

I Log-linear models for sequence prediction, Pr(y|x;w)

I Computations factorize on label bigrams

I Model form:
argmax
y∈Y∗

∑

i

w · f(x, i, yi−1, yi)

I Prediction: uses Viterbi
I Parameter estimation:

I Gradient-based methods, in practice L-BFGS
I Computation of gradient uses forward-backward

I Next Question: Local Loss or CRFs?

61/84

Local vs. Global Log-linear Losses

Local Loss: Pr(y | x) =

n∏

i=1

exp {w · f(x, i, yi−1, yi)}
Z(x, i, yi−1;w)

CRFs: Pr(y | x) =
exp {∑n

i=1 w · f(x, i, yi−1, yi)}
Z(x)

I Both exploit the same factorization, i.e. same features

I Same computations to compute argmaxy Pr(y | x)

I Local loss is locally normalized; CRFs globally normalized
I Local loss assumes that Pr(yi | x1:n, y1:i−1) = Pr(yi | x1:n, yi−1)
I Leads to “Label Bias Problem” (Lafferty et al., 2001; Andor et al., 2016)

I Local loss is cheaper to train (reduces to multiclass MaxEnt learning)

I CRFs are easier to extend to other structures

62/84

Learning Structure Predictors: summary so far

I Linear models for sequence prediction

argmax
y∈Y∗

∑

i

w · f(x, i, yi−1, yi)

I Computations factorize on label bigrams
I Decoding: using Viterbi
I Marginals: using forward-backward

I Parameter estimation:
I Perceptron, Log-likelihood, SVMs
I Extensions from classification to the structured case
I Optimization methods:

I Stochastic (sub)gradient methods (LeCun et al., 1998; Shalev-Shwartz et al., 2011)
I Exponentiated Gradient (Collins et al., 2008)
I SVM Struct (Tsochantaridis et al., 2005)
I Structured MIRA (Crammer et al., 2005)

63/84

Outline

Sequence Prediction
Transition-based Sequence Prediction
Factored Sequence Prediction
Algorithms for Factored Models
Log-linear Factored Models

Learning
The Learner’s Game
Structured Perceptron
Log-linear Models and CRFs

Dependency Parsing
Arc-factored Models
Transition-based Parsing

Summary

64/84

Dependency Parsing

65/84

Dependency Trees

* PRP VBN DT NN IN NN
They solved the problem with statistics

root

subj

dobj

det

prep

pobj

* PRP VBN DT NN IN NN
They solved the problem with statistics

root

subj

dobj

det nmod pobj

66/84

Dependency Trees

* PRP VBN DT NN IN NN
They solved the problem with statistics

root

subj

dobj

det

prep

pobj

* PRP VBN DT NN IN NN
They solved the problem with statistics

root

subj

dobj

det nmod pobj

66/84

Theories of Syntactic Structure

Dependency Trees

* PRP VBN DT NN IN NN
They solved the problem with statistics

root

nsubj

dobj

det nmod pobj

I Main element: dependency

I Focus on relations between words

Constituent Trees
S

NP

They

VP

V

solved

NP

NP

the problem

PP

with statistics

I Main element: constituents (or phrases, or
bracketings)

I Constituents = abstract linguistic units

I Results in nested trees
67/84

Dependency Parsing: Arc-factored models
McDonald, Pereira, Ribarov, and Hajič (2005)

Dependency Parsing: arc-factored models

(McDonald et al. 2005)

liked today* John saw a movie that he

! Parse trees decompose into single dependencies 〈h, m〉

argmax
y∈Y(x)

∑

〈h,m〉∈y

w · f(x, h, m)

! Some features: f1(x, h, m) = [”saw” → ”movie”]
f2(x, h, m) = [distance = +2]

! Tractable inference algorithms exist (tomorrow’s lecture)

I Parse trees decompose into single dependencies 〈h,m〉

argmax
y∈Y(x)

∑

〈h,m〉∈y
w · f(x, h,m)

I Each arc or dependency (h,m) is scored independently of each other

I Some features: f1(x, h,m) = [”saw” → ”movie”]
f2(x, h,m) = [distance = +2]

I Tractable inference algorithms exist

68/84

Features in Arc-Factored Dependency Parsing
f(x, h,m, l): a vector of features of (h,m, l) assigned to x

I As in sequence prediction, we typically use indicator features

I Templates in McDonald et al. (2005):

word features
h-word, h-pos

h-word

h-pos

m-word, m-pos

m-word

m-pos

dependency features
h-word, h-pos, m-word, m-pos

h-pos, m-word, m-pos

h-word, m-word, m-pos

h-word, h-pos, m-pos

h-word, h-pos, m-word

h-word, m-word

h-pos, m-pos

I Example: (feature template + dependency direction)

fj(x, h,m, l) =

1 if word(h) =solve and word(m) =problem

and l =dobj and h < m
0 otherwise

69/84

MST Parsing for Arc-factored models
McDonald, Pereira, Ribarov, and Hajič (2005)

I Parsing problem, given a sentenc x:

argmax
y∈Y(x)

∑

〈h,m〉∈y
score(x, h,m)

I Can be formulated as a directed Maximum Spanning Tree (MST) problem:

I The Chu-Liu-Edmonds algorithm finds the optimal tree in O(n2)

70/84

The Eisner Algorithm for Arc-factored models
Eisner (1996); McDonald and Pereira (2006); Carreras (2007); Koo and Collins (2010)

(illustration by Joakim Nivre)

I The Eisner (1996) algorithm is a variant of
CKY specific to non-crossing dep trees

I Finds optimal tree in O(n3)

Extension to higher-order parsing:

I First-order O(n3)

I Second-order:

I Horizontal O(n3) (McDonald and Pereira, 2006)

I Vertical O(n4) (Carreras, 2007)

I Third-order O(n4) (Koo and Collins, 2010)

71/84

Experiments with Higher-Order and Word Cluster Features
Koo, Carreras, and Collins (2008)

72/84

Transition-based Parsing: Nivre’s Arc-Standard System
Nivre (2008)

I State:
I Buffer: list of upcoming words to be parsed
I Stack: stack of subtrees that are already parsed

I Parsing actions:
I Shift: shift next word in the buffer to the task
I Left-arc (l): add a left arc between the two top subtrees of the stack, with label l
I Right-arc (l): add a right arc between the two top subtrees of the stack, with label l

I Parsing is linear in the sentence length, very fast! But prone to greedy mistakes!
I Parsing model: score a candidate action in the context of a state

I Has access to the full sentence and the full history of actions

73/84

Arc-Standard Parsing: Example
(illustration by Miguel Ballesteros)

74/84

Arc-Standard Parsing: Example
(illustration by Miguel Ballesteros)

74/84

Arc-Standard Parsing: Example
(illustration by Miguel Ballesteros)

74/84

Arc-Standard Parsing: Example
(illustration by Miguel Ballesteros)

74/84

Arc-Standard Parsing: Example
(illustration by Miguel Ballesteros)

74/84

Arc-Standard Parsing: Example
(illustration by Miguel Ballesteros)

74/84

Arc-Standard Parsing: Example
(illustration by Miguel Ballesteros)

74/84

Arc-Standard Parsing: Example
(illustration by Miguel Ballesteros)

74/84

Features in Transition-based Dependency Parsing
(slide by Joakim Nivre)

I Features in f(x, buffer B, stack S,past actions A, candidate action a):
I Words in the stack S and the buffer B
I Partial subtrees in the stack S (higher-order)
I Sequence of previous actions A (higher-order)

I Neural nets are effective at encoding all these structures into feature vectors

75/84

Outline

Sequence Prediction
Transition-based Sequence Prediction
Factored Sequence Prediction
Algorithms for Factored Models
Log-linear Factored Models

Learning
The Learner’s Game
Structured Perceptron
Log-linear Models and CRFs

Dependency Parsing
Arc-factored Models
Transition-based Parsing

Summary

76/84

Linear (Structured) Prediction

I Multiclass classification
argmax

y∈{1,...,L}
w · f(x,y)

I Sequence prediction (bigram factorization)

argmax
y∈Y(x)

w · f(x,y) = argmax
y∈Y(x)

∑

i

w · f(x, i,yi−1,yi)

I Dependency parsing (arc-factored)

argmax
y∈Y(x)

w · f(x,y) = argmax
y∈Y(x)

∑

〈h,m,l〉∈y

w · f(x, h,m, l)

I Factored models: Applicable to other tasks and factorizations

I Alternative: transition systems (very fast and expressive, but prone to search errors)

77/84

Factored Sequence Prediction: from Linear to Non-linear

score(x,y) =
∑

i

s(x, i, yi−1, yi)

I Linear:
s(x, i, yi−1, yi) = w · f(x, i,yi−1,yi)

I Non-linear, using a feed-forward neural network:

s(x, i, yi−1, yi) = w · [eyi−1,yi ⊗ h(f(x, i))]

where:
h(f(x, i)) = σ(W 2σ(W 1σ(W 0f(x, i))))

I Remarks:
I The non-linear model computes a hidden representation of the input
I Still factored: Viterbi and Forward-Backward work
I Parameter estimation becomes non-convex, use backpropagation

78/84

Recurrent Sequence Prediction

. . .

x2 xnx3x1

y1 y2 y3 yn

h1 h2 h3 hn

I Induction of hidden vectors (i.e. embeddings) that keep track of previous observations
and predictions

I Making predictions is not tractable
I In practice: greedy predictions or beam search
I Making predictions was not tractable for transition systems either!

I Learning is non-convex, so what?
I Popular methods: RNN, LSTM, Spectral Models, . . .

79/84

80/84

81/84

Thanks!

82/84

References I

Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman Ganchev, Slav Petrov, and Michael Collins. Globally normalized
transition-based neural networks. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 2442–2452, Berlin, Germany, August 2016. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/P16-1231.

Xavier Carreras. Experiments with a higher-order projective dependency parser. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), 2007.

Michael Collins. Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms. In Proceedings of the
ACL-02 conference on Empirical methods in natural language processing-Volume 10, pages 1–8. Association for Computational Linguistics, 2002.

Michael Collins and Brian Roark. Incremental parsing with the perceptron algorithm. In Proceedings of the 42nd Annual Meeting on Association for
Computational Linguistics, page 111. Association for Computational Linguistics, 2004.

Michael Collins, Amir Globerson, Terry Koo, Xavier Carreras, and Peter L Bartlett. Exponentiated gradient algorithms for conditional random fields and
max-margin markov networks. The Journal of Machine Learning Research, 9:1775–1822, 2008.

Koby Crammer, Ryan McDonald, and Fernando Pereira. Scalable large-margin online learning for structured classification. In NIPS Workshop on Learning
With Structured Outputs, 2005.

Jason M Eisner. Three new probabilistic models for dependency parsing: An exploration. In Proceedings of the 16th conference on Computational
linguistics-Volume 1, pages 340–345. Association for Computational Linguistics, 1996.

Yoav Freund and Robert E. Schapire. Large margin classification using the perceptron algorithm. Mach. Learn., 37(3):277–296, December 1999. ISSN
0885-6125. doi: 10.1023/A:1007662407062. URL http://dx.doi.org/10.1023/A:1007662407062.

Liang Huang, Suphan Fayong, and Yang Guo. Structured perceptron with inexact search. In Proceedings of the 2012 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 142–151. Association for Computational Linguistics,
2012.

Terry Koo and Michael Collins. Efficient third-order dependency parsers. In Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics, pages 1–11. Association for Computational Linguistics, 2010.

Terry Koo, Xavier Carreras, and Michael Collins. Simple semi-supervised dependency parsing. In Proceedings of ACL-08: HLT, pages 595–603, 2008.

83/84

http://www.aclweb.org/anthology/P16-1231
http://dx.doi.org/10.1023/A:1007662407062

References II

Sanjiv Kumar and Martial Hebert. Man-made structure detection in natural images using a causal multiscale random field. In 2003 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR 2003), 16-22 June 2003, Madison, WI, USA, pages 119–126, 2003. doi:
10.1109/CVPR.2003.1211345. URL https://doi.org/10.1109/CVPR.2003.1211345.

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data.
In Proceedings of the Eighteenth International Conference on Machine Learning, ICML ’01, pages 282–289, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc. ISBN 1-55860-778-1. URL http://dl.acm.org/citation.cfm?id=645530.655813.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):
2278–2324, 1998.

Andrew McCallum, Dayne Freitag, and Fernando CN Pereira. Maximum entropy markov models for information extraction and segmentation. In Icml,
volume 17, pages 591–598, 2000.

Ryan McDonald and Fernando Pereira. Online learning of approximate dependency parsing algorithms. In 11th Conference of the European Chapter of the
Association for Computational Linguistics, 2006.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajič. Non-projective dependency parsing using spanning tree algorithms. In Proceedings of the
conference on Human Language Technology and Empirical Methods in Natural Language Processing, pages 523–530. Association for Computational
Linguistics, 2005.

Joakim Nivre. Algorithms for deterministic incremental dependency parsing. Computational Linguistics, 34(4):513–553, December 2008. ISSN 0891-2017.

Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos: Primal estimated sub-gradient solver for svm. Mathematical programming,
127(1):3–30, 2011.

Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Altun. Large margin methods for structured and interdependent output variables.
Journal of machine learning research, 6(Sep):1453–1484, 2005.

Yue Zhang and Stephen Clark. Syntactic processing using the generalized perceptron and beam search. Computational linguistics, 37(1):105–151, 2011.

84/84

https://doi.org/10.1109/CVPR.2003.1211345
http://dl.acm.org/citation.cfm?id=645530.655813

	Sequence Prediction
	Transition-based Sequence Prediction
	Factored Sequence Prediction
	Algorithms for Factored Models
	Log-linear Factored Models

	Learning
	The Learner's Game
	Structured Perceptron
	Log-linear Models and CRFs

	Dependency Parsing
	Arc-factored Models
	Transition-based Parsing

	Summary

